Skip to main content
Log in

Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present an experimental characterization describing the characteristics features of the plasma plume dynamics and material removal efficiency during ultrashort, visible (527 nm, ≈300 fs) laser ablation of nickel in high vacuum. The spatio-temporal structure and expansion dynamics of the laser ablation plasma plume are investigated by using both time-gated fast imaging and optical emission spectroscopy. The spatio-temporal evolution of the ablation plume exhibits a layered structure which changes with the laser pulse fluence F. At low laser fluences (F<0.5 J/cm2) the plume consists of two main populations: fast Ni atoms and slower Ni nanoparticles, with average velocities of ≈104 m/s for the atomic state and ≈102 m/s for the condensed state. At larger fluences (F>0.5 J/cm2), a third component of much faster atoms is observed to precede the main atomic plume component. These atoms can be ascribed to the recombination of faster ions with electrons in the early stages of the plume evolution. A particularly interesting feature of our analysis is that the study of the ablation efficiency as a function of the laser fluence indicates the existence of an optimal fluence range (a maximum) for nanoparticles generation, and an increase of atomization at larger fluences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.R. Phypps (Ed.), Laser Ablation and its Applications (Springer, Berlin, 2006)

  2. S.I. Anisimov, B.S. Luk’yanchuk, Phys. Uspekhi 45, 293 (2002)

    Article  ADS  Google Scholar 

  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  4. F. Korte, J. Koch, B.N. Chichkov, Appl. Phys. A 79, 879 (2004)

    Article  ADS  Google Scholar 

  5. G. Ausanio, A.C. Barone, V. Iannotti, P. Scardi, M. D’Incau, S. Amoruso, M. Vitiello, L. Lanotte, Nanotechnology 17, 536 (2006)

    Article  ADS  Google Scholar 

  6. B.R. Tull, J.E. Carey, M.A. Sheedy, C. Friend, E. Mazur, Appl. Phys. A 83, 341 (2006)

    Article  ADS  Google Scholar 

  7. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80, 4076 (1998)

    Article  ADS  Google Scholar 

  8. L. Jiang, H.L. Tsai, J. Phys. D Appl. Phys. 37, 1492 (2004)

    Article  Google Scholar 

  9. N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, J. Phys. D Appl. Phys. 37, 638 (2004)

    Article  ADS  Google Scholar 

  10. T.E. Glover, J. Opt. Soc. Am. B 20, 125 (2003)

    Article  ADS  Google Scholar 

  11. T.E. Itina, F. Vidal, Ph. Delaporte, M. Sentis, Appl. Phys. A 79, 1089 (2004)

  12. D. Perez, L.J. Lewis, Appl. Phys. A 79, 987 (2004)

    Article  ADS  Google Scholar 

  13. C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)

    Article  ADS  Google Scholar 

  14. C. Cheng, X. Xu, Phys. Rev. B 72, 165415 (2005)

    Article  ADS  Google Scholar 

  15. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  16. S. Amoruso, R. Bruzzese, M. Vitiello, N.N. Nedialkov, P.A. Atanasov, J. Appl. Phys. 98, 044907 (2005)

    Article  ADS  Google Scholar 

  17. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  18. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D Appl. Phys. 40, 331 (2007)

    Article  ADS  Google Scholar 

  19. S. Amoruso, G. Ausanio, R. Bruzzese, L. Lanotte, P. Scardi, M. Vitiello, X. Wang, J. Phys. C Condens. Matter 18, L49 (2006)

    Article  ADS  Google Scholar 

  20. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, Phys. Rev. B 71, 033406 (2005)

    Article  ADS  Google Scholar 

  21. Y. Okano, K. Oguri, T. Nishikawa, H. Nakano, Appl. Phys. Lett. 89, 221502 (2006)

    Article  ADS  Google Scholar 

  22. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  23. S. Amoruso, A. Sambri, X. Wang, J. Appl. Phys. 100, 013302 (2006)

    Article  ADS  Google Scholar 

  24. W.C. Martin, J. Sugar, A. Musgrove, G.R. Dalton, W.L. Wiese, J.R. Fuhr, D.E. Kelleher, NIST Database for Atomic Spectroscopy (NIST, Gaithersburg, MD, 1995)

    Google Scholar 

  25. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, Europhys. Lett. 67, 404 (2004)

    Article  ADS  Google Scholar 

  26. D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  27. X. Zeng, N. Koshizaki, T. Sasaki, Appl. Phys. A 69, S253 (1999)

    Article  ADS  Google Scholar 

  28. S.J. Henley, J.D. Carey, S.R.P. Silva, G.M. Fuge, M.N.R. Ashfold, D. Anglos, Phys. Rev. B 72, 205413 (2005)

    Article  ADS  Google Scholar 

  29. F. Claeyssens, S.J. Henley, M.N.R. Ashfold, J. Appl. Phys. 94, 2203 (2003)

    Article  ADS  Google Scholar 

  30. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995)

    Article  ADS  Google Scholar 

  31. P.P. Pronko, P.A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, G. Mourou, Phys. Rev. B 58, 2387 (1998)

    Article  ADS  Google Scholar 

  32. S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, X. Wang, Appl. Surf. Sci. 252, 4863 (2006)

    Article  ADS  Google Scholar 

  33. K. Vestentoft, P. Balling, Appl. Phys. A 84, 207 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amoruso.

Additional information

PACS

52.50.-b; 52.38.Mf; 79.20.Ds; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amoruso, S., Bruzzese, R., Pagano, C. et al. Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum. Appl. Phys. A 89, 1017–1024 (2007). https://doi.org/10.1007/s00339-007-4211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4211-6

Keywords

Navigation