Skip to main content
Log in

Dynamics of the ejected material in ultra-short laser ablation of metals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A molecular dynamics model is applied to study the formation and the early stages of ejection of material in ultra-short laser ablation of metals in vacuum. Simulations of the ablation process for iron at a pulse duration of 0.1 ps and at different laser fluences are performed. Different features of the ejection mechanism are observed below, near, and above the ablation threshold. The last is estimated as approximately 0.1 J/cm2. The structure of the ablated material is found to depend on the applied laser fluence. The expanded plume consists mainly of large clusters at fluences near to the threshold. With the increase of the laser fluence the presence of the large clusters decreases. Clear spatial segregation of species with different sizes is observed in the direction normal to the surface several tens of picoseconds after the laser pulse onset. The angular distribution of the ejected material is estimated for different regimes of material removal. Above the ablation threshold the distribution is forward peaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perrière, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J.C. Loulergue, J. Etchepare: J. Appl. Phys. 91, 690 (2002)

    Article  ADS  Google Scholar 

  2. A.V. Singh, R.M. Mehra, N. Buthrath, A. Wakahara, A. Yoshida: J. Appl. Phys. 90, 5661 (2001)

    Article  ADS  Google Scholar 

  3. M. Ye, C.P. Grigoropoulos: J. Appl. Phys. 89, 5183 (2001)

    Article  ADS  Google Scholar 

  4. Z. Zang, P.A. Van Rompay, J.A. Nees, P.P. Pronko: J. Appl. Phys. 92, 2867 (2002)

    Article  ADS  Google Scholar 

  5. L.V. Zhigilei: Appl. Phys. A 76, 339 (2003)

    Article  ADS  Google Scholar 

  6. M.I. Zeifman, B.J. Garrison, L.V. Zhigilei: J. Appl. Phys. 92, 2181 (2002)

    Article  ADS  Google Scholar 

  7. O. Ellegaard, J. Schou, H.M. Urbassek: Appl. Phys. A 69, 577 (1999)

    Article  ADS  Google Scholar 

  8. D. Sibold, H.M. Urbassek: Phys. Rev. A 43, 6722 (1991)

    Article  ADS  Google Scholar 

  9. E. Ohmura, I. Fukumoto: Int. J. Japan Soc. Precis. Eng. 30, 128 (1996)

    Google Scholar 

  10. F. Garrelie, C. Champeaux, A. Catherinot: Appl. Phys. A 69, S55 (1999)

  11. M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford 1987)

  12. I.A. Girifalco, V.G. Weizer: Phys. Rev. 114, 687 (1959)

    Article  ADS  Google Scholar 

  13. E.G. Gamaly, A.V. Rode, V.T. Tikhonchuk, B. Luther-Davies: Appl. Surf. Sci. 8094, 1 (2002)

    Google Scholar 

  14. S.I. Anisimov, N.A. Inogamov, A.M. Oparin, B. Rethfeld, T. Yabe, M. Ogawa, V.E. Fortov: Appl. Phys. A 69, 617 (1999)

    Article  ADS  Google Scholar 

  15. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling: J. Opt. Soc. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  16. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara: Appl. Phys. A 69, 359 (1999)

    Article  ADS  Google Scholar 

  17. B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T.W. Johnston, S. Laville, M. Sabsabi, J. Margot: J. Appl. Phys. 89, 8247 (2001)

    Article  ADS  Google Scholar 

  18. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias: Appl. Phys. A 69, 99 (1999)

    Article  ADS  Google Scholar 

  19. N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, G. Heusel, D. Breitling, A. Ruf, H. Hügel, F. Dausinger, P. Berger: Thin Solid Films 453-454, 496 (2004)

  20. R. Stoian, D. Ashkenasi, A. Rosenfeld, M. Wittmann, R. Kelly, E.E.B. Campbell: Nucl. Instrum. Methods Phys. Res. B 166167, 682 (2000)

    Google Scholar 

  21. E. Ohmura, I. Fukumoto, I. Miyamoto: in Proc. ICALEO’98, Ser. A, 1998, p. 45

  22. R. Kelly, R.W. Dreyfus: Nucl. Instrum. Methods Phys. Res. B 32, 341 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.A. Atanasov.

Additional information

PACS

79.20.Ds; 52.38.Mf; 02.70.Ns; 81.05.Bx

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedialkov, N., Atanasov, P., Imamova, S. et al. Dynamics of the ejected material in ultra-short laser ablation of metals. Appl. Phys. A 79, 1121–1125 (2004). https://doi.org/10.1007/s00339-004-2659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2659-1

Keywords

Navigation