Skip to main content

Advertisement

Log in

Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigated the mechanisms of material ejection in Q-switched Er:YAG laser tissue ablation (70-ns pulse duration) where moderate and large radiant exposures are associated with large volumetric energy densities in the target material. For water, an initial phase of non-equilibrium surface vaporization is followed by an explosive vaporization of the superficial liquid volume from a supercritical state. The ablation of deeper layers with lower peak temperatures proceeds as phase explosion. For mechanically strong tissues, non-equilibrium surface vaporization is followed by a vapour explosion coupled with thermal dissociation of the biomolecules into volatile products. In deeper layers, ablation proceeds as confined boiling with mechanical tearing of the tissue matrix by the vapour pressure. The recoil stress induced at a radiant exposure of 5.4 J/cm2 is in the order of 500–900 MPa. For water and soft tissues such as liver, the recoil causes a powerful secondary material expulsion. For stronger tissues such as skin, no secondary expulsion was observed even though the recoil stress largely exceeds the static tensile strength of the tissue. Recoil-induced material expulsion results in an increase of both ablation efficiency and mechanical side effects of ablation. Theoretical modelling of the succession of phase transitions in nanosecond-laser tissue ablation and of recoil-induced material expulsion remain a major challenge for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Google Scholar 

  2. A. Vogel, V. Venugopalan, Proc. SPIE 4961, 66 (2003)

    Google Scholar 

  3. A. Vogel, B. Kersten, I. Apitz, Proc. SPIE 4961, 40 (2003)

    Google Scholar 

  4. K. Nahen, A. Vogel, Lasers Surg. Med. 25, 69 (1999)

    Google Scholar 

  5. K. Nahen, A. Vogel, J. Biomed. Opt. 7, 165 (2002)

    Google Scholar 

  6. E. Hecht. A. Zajac, Optics (Addison-Wesley, Reading, MA, 1977)

  7. V.P. Skripov, E.N. Sinitsyn, P.A. Pavlov, G.V. Ermakov, G.N. Muratov, N.V. Bulanov, V.G. Baidakov, Thermophysical Properties of Liquids in the Metastable (Superheated) State (Gordon and Breach Science, New York, 1988)

  8. L.V. Zhigilei, Appl. Phys. A 76, 339 (2003)

    Google Scholar 

  9. J.T. Walsh, T.F. Deutsch, Appl. Phys. B 52, 217 (1991)

    Google Scholar 

  10. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)

    Google Scholar 

  11. A.D. Yablon, N.S. Nishioka, B.B. Mikić, V. Venogopalon: Proc. SPIE 3343, 69 (1998)

    Article  ADS  Google Scholar 

  12. Q. Lu, Phys. Rev. E 67, 016410 (2003)

    Google Scholar 

  13. V. Venugopalan, N.S. Nishioka, B.B. Mikic, Biophys. J. 70, 2981 (1996)

    Google Scholar 

  14. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999)

  15. H.L. Brode, Phys. Fluids 2, 217 (1959)

  16. J.P. Cummings, J.T. Walsh, Proc. SPIE 1646, 242 (1992)

    Google Scholar 

  17. A.D. Zweig, H.P. Weber, IEEE J. Quantum Electron. QE-23, 1787 (1987)

  18. M. Frenz, V. Romano, A.D. Zweig, H.P. Weber, N.I. Chapliev, A.V. Silenok, J. Appl. Phys. 66, 4496 (1989)

    Google Scholar 

  19. A.D. Zweig, J. Appl. Phys. 70, 1684 (1991)

    Google Scholar 

  20. O.G. Engel, J. Appl. Phys. 37, 1798 (1966)

    Google Scholar 

  21. A. Prosperetti, H.N. Oguz, Annu. Rev. Fluid Mech. 25, 577 (1993)

    Google Scholar 

  22. F.P. Bowden, J.H. Brunton, Proc. R. Soc. Lond. A 263, 433 (1961)

    Google Scholar 

  23. C.L. Mader, M.L. Gittings, Sci. Tsunami Hazards 21, 91 (2003)

    Google Scholar 

  24. L.D. Landau, E.M. Lifschitz, Hydrodynamik (Akademie, Berlin, 1991), x89

  25. A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

    Google Scholar 

  26. G.E. Duvall, G.R. Fowles, Shock Waves. In High Pressure Physics and Chemistry, ed. by R.S. Bradley (Academic, New York, 1963), pp. 209–291

  27. M.H. Rice, J.M. Walsh, J. Chem. Phys. 26, 824 (1957)

    Google Scholar 

  28. F. Könz, M. Frenz, H. Pratisto, H.P. Weber, H. Lubatschowski, O. Kermani, W. Ertmer, H.J. Altermatt, T. Schaffner, Proc. SPIE 2077, 78 (1994)

  29. F.A. Duck, Physical Properties of Tissue (Academic, London, 1990)

  30. F.H. Silver, Biological Materials: Structure, Mechanical Properties, and Modeling of Soft Tissue (New York University Press, New York and London, 1987)

  31. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)

    Google Scholar 

  32. S. Watanabe, T.J. Flotte, D.J. McAucliffe, S.L. Jacques, J. Invest. Dermatol. 90, 761 (1988)

    Google Scholar 

  33. J.T. Walsh, T.F. Deutsch, IEEE Trans. Biomed. Eng. 36, 1195 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vogel.

Additional information

PACS

42.62.Be; 79.20.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apitz, I., Vogel, A. Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A 81, 329–338 (2005). https://doi.org/10.1007/s00339-005-3213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3213-5

Keywords

Navigation