Skip to main content
Log in

Atomistic modeling of pulsed laser ablation in liquid: spatially and time-resolved maps of transient nonequilibrium states and channels of nanoparticle formation

  • S.I. : 50th Anniversary of Applied Physics
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanisms of picosecond pulse laser ablation in liquid are investigated in a series of large-scale atomistic simulations performed for FeNi targets irradiated in a liquid environment by picosecond laser pulses at a broad range of fluences. The simulations reveal the existence of three fluence regimes featuring different dominant mechanisms of material ejection and nanoparticle formation. These are (1) the low fluence regime, where atomic clusters and small nanoparticles form through the evaporation of metal atoms followed by condensation in a low-density region at the front of the ablation plume, (2) the medium fluence regime, where roughening and decomposition of a top part of a transient spongy structure of interconnected liquid regions leads to the formation of large nanoparticles, and (3) the high fluence regime, where the nanoparticles form primarily at the phase separation front propagating through the ablation plume cooled from the supercritical state by expansion against the liquid environment and mixing with the liquid. The generation of the largest nanoparticles is observed in the medium fluence regime, and both the maximum size of the nanoparticles and the energy efficiency of the material conversion into nanoparticles decrease upon transition to the high fluence regime. Some of the nanoparticles experience extreme quench rates and rapidly solidify under conditions of deep undercooling, yielding a population of defect-rich nanoparticles of interest for practical applications. The results of the simulations are mapped to the conditions realized within a laser spot irradiated by a beam with a Gaussian spatial profile, where different ablation regimes are activated simultaneously in different parts of the laser spot. The spatially and time-resolved maps of the transient nonequilibrium states predicted in the simulations provide a comprehensive picture of the ablation dynamics and a solid foundation for interpretation of the results of time-resolved experimental probing of the initial stage of the ablation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

Data supporting this study are included within the article. Some of the datasets are available from the authors upon a reasonable request.

References

  1. Special issue on nanoparticles in catalysis. Chem. Rev. 120(2), 461–1512 (2020)

  2. R.C. Forsythe, C.P. Cox, M.K. Wilsey, A.M. Müller, Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev. 121, 7568–7637 (2021)

    Google Scholar 

  3. M.-C. Daniel, D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Google Scholar 

  4. C.M. Hussain (ed.), Handbook of Nanomaterials for Industrial Applications (Elsevier, Amsterdam, 2020)

    Google Scholar 

  5. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017)

    ADS  Google Scholar 

  6. C. Doñate-Buendia, P. Kürnsteiner, F. Stern, M.B. Wilms, R. Streubel, I.M. Kusoglu, J. Tenkamp, E. Bruder, N. Pirch, S. Barcikowski, K. Durst, J.H. Schleifenbaum, F. Walther, B. Gault, B. Gökce, Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders. Acta Mater. 206, 116566 (2021)

    Google Scholar 

  7. D. Zhang, B. Gökce, Perspective of laser-prototyping nanoparticle-polymer composites. Appl. Surf. Sci. 392, 991–1003 (2017)

    ADS  Google Scholar 

  8. O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013)

    Google Scholar 

  9. L. Zhang, J. Xing, X. Wen, J. Chai, S. Wang, Q. Xiong, Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale 9, 12843–12849 (2017)

    Google Scholar 

  10. J.L. West, N.J. Halas, Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003)

    Google Scholar 

  11. N.G. Khlebtsov, L.A. Dykman, Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111, 1–35 (2010)

    ADS  Google Scholar 

  12. D. Kim, K. Shin, S.G. Kwon, T. Hyeon, Synthesis and biomedical applications of multifunctional nanoparticles. Adv. Mater. 30, 1802309 (2018)

    Google Scholar 

  13. K. Kaefer, K. Krüger, F. Schlapp, H. Uzun, S. Celiksoy, B. Flietel, A. Heimann, T. Schroeder, O. Kempski, C. Sönnichsen, Implantable sensors based on gold nanoparticles for continuous long-term concentration monitoring in the body. Nano Lett. 21, 3325–3330 (2021)

    ADS  Google Scholar 

  14. D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017)

    Google Scholar 

  15. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, S. Barcikowski, Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem. Eur. J. 26, 9206–9242 (2020)

    Google Scholar 

  16. S. Jendrzej, B. Gökce, M. Epple, S. Barcikowski, How size determines the value of gold: Economic aspects of wet chemical and laser-based metal colloid synthesis. ChemPhysChem 18, 1012–1019 (2017)

    Google Scholar 

  17. C.-Y. Shih, R. Streubel, J. Heberle, A. Letzel, M.V. Shugaev, C. Wu, M. Schmidt, B. Gökce, S. Barcikowski, L.V. Zhigilei, Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018)

    Google Scholar 

  18. C.-Y. Shih, M.V. Shugaev, C. Wu, L.V. Zhigilei, Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: Molecular dynamics study. J. Phys. Chem. C 121, 16549–16567 (2017)

    Google Scholar 

  19. W. Huang, A.C. Johnston-Peck, T. Wolter, W.C.D. Yang, L. Xu, J. Oh, B.A. Reeves, C. Zhou, M.E. Holtz, A.A. Herzing, A.M. Lindenberg, M. Mavrikakis, M. Cargnello, Steam-created grain boundaries for methane C-H activation in palladium catalysts. Science 373, 1518–1523 (2021)

    ADS  Google Scholar 

  20. Z. Li, J.-Y. Fu, Y. Feng, C.-K. Dong, H. Liu, X.-W. Du, A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2, 1107–1114 (2019)

    Google Scholar 

  21. J.-Y. Lin, C. Xi, Z. Li, Y. Feng, D.-Y. Wu, C.-K. Dong, P. Yao, H. Liu, X.-W. Du, Lattice-strained palladium nanoparticles as active catalysts for the oxygen reduction reaction. Chem. Commun. 55, 3121–3123 (2019)

    Google Scholar 

  22. Q. Lin, R. Nadarajah, E. Hoglund, A. Semisalova, J.M. Howe, B. Gökce, G. Zangari, Towards synthetic L10-FeNi: Detecting the absence of cubic symmetry in laser-ablated Fe-Ni nanoparticles. Appl. Surf. Sci. 567, 150664 (2021)

    Google Scholar 

  23. S. Reichenberger, Freezing crystallographic defects into nanoparticles: The development of pulsed laser defect engineering in liquid (PUDEL). Sci. China: Phys. Mech. Astron. 65, 274208 (2022)

    ADS  Google Scholar 

  24. P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys. Chem. Chem. Phys. 15, 3068–3074 (2013)

    Google Scholar 

  25. S. Ibrahimkutty, P. Wagener, T.D. Rolo, D. Karpov, A. Menzel, T. Baumbach, S. Barcikowski, A. Plech, A hierarchical view on material formation during pulsed-laser synthesis of nanoparticles in liquid. Sci. Rep. 5, 16313 (2015)

    ADS  Google Scholar 

  26. A. Letzel, B. Gökce, P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, Size quenching during laser synthesis of colloids happens already in the vapor phase of the cavitation bubble. J. Phys. Chem. C 121, 5356–5365 (2017)

    Google Scholar 

  27. K. Ando, T. Nakajima, Clear observation of the formation of nanoparticles inside the ablation bubble through a laser-induced flat transparent window by laser scattering. Nanoscale 12, 9640–9646 (2020)

    Google Scholar 

  28. S. Reich, A. Letzel, A. Menzel, N. Kretzschmar, B. Gökce, S. Barcikowski, A. Plech, Early appearance of crystalline nanoparticles in pulsed laser ablation in liquids dynamics. Nanoscale 11, 6962–6969 (2019)

    Google Scholar 

  29. M. Spellauge, C. Doñate-Buendía, S. Barcikowski, B. Gökce, H.P. Huber, Comparison of ultrashort pulse ablation of gold in air and water by time-resolved experiments. Light Sci. Appl. 11, 68 (2022)

    ADS  Google Scholar 

  30. M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment. Phys. Chem. Chem. Phys. 15, 3108–3114 (2013)

    Google Scholar 

  31. C.-Y. Shih, C. Wu, M.V. Shugaev, L.V. Zhigilei, Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J. Colloid Interface Sci. 489, 3–17 (2017)

    ADS  Google Scholar 

  32. C.-Y. Shih, M.V. Shugaev, C. Wu, L.V. Zhigilei, The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: Insights from large-scale atomistic simulations. Phys. Chem. Chem. Phys. 22, 7077–7099 (2020)

    Google Scholar 

  33. N.A. Inogamov, V.A. Khokhlov, Yu.V. Petrov, V.V. Zhakhovsky, Hydrodynamic and molecular-dynamics modeling of laser ablation in liquid: from surface melting till bubble formation. Opt. Quantum Electron. 52, 63 (2020)

    Google Scholar 

  34. D.S. Ivanov, T. Izgin, A.N. Maiorov, V.P. Veiko, B. Rethfeld, Y.I. Dombrovska, M.E. Garcia, I.N. Zavestovskaya, S.M. Klimentov, A.V. Kabashin, Numerical investigation of ultrashort laser-ablative synthesis of metal nanoparticles in liquids using the atomistic-continuum model. Molecules 25, 67 (2020)

    Google Scholar 

  35. C.-Y. Shih, C. Chen, C. Rehbock, A. Tymoczko, U. Wiedwald, M. Kamp, U. Schuermann, L. Kienle, S. Barcikowski, L.V. Zhigilei, Limited elemental mixing in nanoparticles generated by ultrashort pulse laser ablation of AgCu bilayer thin films in a liquid environment: atomistic modeling and experiments. J. Phys. Chem. C 125, 2132–2155 (2021)

    Google Scholar 

  36. N.A. Inogamov, V.V. Zhakhovsky, V.A. Khokhlov, Physical processes accompanying laser ablation in liquid. JETP Lett. 115, 16–22 (2022)

    ADS  Google Scholar 

  37. C. Chen, L.V. Zhigilei, Ultrashort pulse laser ablation in liquids: probing the first nanoseconds of underwater phase explosion. Light Sci. Appl. 11, 111 (2022)

    ADS  Google Scholar 

  38. T.E. Itina, On nanoparticle formation by laser ablation in liquids. J. Phys. Chem. C 115, 5044–5048 (2011)

    Google Scholar 

  39. V. Amendola, M. Meneghetti, What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046 (2013)

    Google Scholar 

  40. M. Dell’Aglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 4–9 (2015)

    Google Scholar 

  41. T. Tsuji, Y. Okazaki, Y. Tsuboi, M. Tsuji, Nanosecond time-resolved observations of laser ablation of silver in water. Jpn. J. Appl. Phys. 46, 1533–1535 (2007)

    ADS  Google Scholar 

  42. N. Lasemi, U. Pacher, L.V. Zhigilei, O. Bomatí-Miguel, R. Lahoz, W. Kautek, Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air. Appl. Surf. Sci. 433, 772–779 (2018)

    ADS  Google Scholar 

  43. A.V. Kabashin, M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941–7943 (2003)

    ADS  Google Scholar 

  44. J.-P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution. Appl. Phys. A 80, 753–758 (2005)

    ADS  Google Scholar 

  45. L. Gamrad, C. Rehbock, J. Krawinkel, B. Tumursukh, A. Heisterkamp, S. Barcikowski, Charge balancing of model gold-nanoparticle-peptide conjugates controlled by the peptide’s net charge and the ligand to nanoparticle ratio. J. Phys. Chem. C 118, 10302–10313 (2014)

    Google Scholar 

  46. G. Marzun, J. Nakamura, X. Zhang, S. Barcikowski, P. Wagener, Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts. Appl. Surf. Sci. 348, 75–84 (2015)

    Google Scholar 

  47. S. Dittrich, S. Barcikowski, B. Gökce, Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron. Adv. 4, 200072 (2021)

    Google Scholar 

  48. C.-Y. Shih, I. Gnilitskyi, M.V. Shugaev, E. Skoulas, E. Stratakis, L.V. Zhigilei, Effect of liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. Nanoscale 12, 7674–7687 (2020)

    Google Scholar 

  49. M.V. Shugaev, C.-Y. Shih, E.T. Karim, C. Wu, L.V. Zhigilei, Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer. Appl. Surf. Sci. 417, 54–63 (2017)

    ADS  Google Scholar 

  50. N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch, M. Bernreuther, C.W. Glass, C. Niethammer, N. Hammer, B. Krischok, M. Resch, D. Kranzlmüller, H. Hasse, H.-J. Bungartz, P. Neumann, TweTriS: twenty trillion-atom simulation. Int. J. High Perform. Comput. Appl. 33, 838–854 (2019)

    Google Scholar 

  51. H. Watanabe, M. Suzuki, N. Ito, Huge-scale molecular dynamics simulation of multibubble nuclei. Comput. Phys. Commun. 184, 2775–2784 (2013)

    ADS  Google Scholar 

  52. G. Chu, Y. Li, R. Zhao, S. Ren, W. Yang, X. He, C. Hu, J. Wang, MD simulation of hundred-billion-metal-atom cascade collision on Sunway Taihulight. Comput. Phys. Commun. 269, 108128 (2021)

    MathSciNet  Google Scholar 

  53. C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11–32 (2014)

    ADS  Google Scholar 

  54. V.P. Skripov, Metastable Liquids (Wiley, Israel Program for Scientific Translations, New York, 1974)

    Google Scholar 

  55. A. Miotello, R. Kelly, Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 69, S67–S73 (1999)

    ADS  Google Scholar 

  56. M.V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello, N.M. Bulgakova, L.V. Zhigilei, Laser-induced thermal processes: Heat transfer, generation of stresses, melting and solidification, vaporization and phase explosion, in Handbook of Laser Micro- and Nano-Engineering. ed. by K. Sugioka (Springer, Cham, 2021), pp.83–163

    Google Scholar 

  57. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)

    ADS  Google Scholar 

  58. M.V. Shugaev, M. He, S.A. Lizunov, Y. Levy, T.J.-Y. Derrien, V.P. Zhukov, N.M. Bulgakova, L.V. Zhigilei, Insights into laser-materials interaction through modeling on atomic and macroscopic scales, in Advances in the Application of Lasers in Materials Science, Springer Series in Materials Science, vol. 274, ed. by P.M. Ossi (Springer International Publishing Switzerland, 2018), pp.107–148

    Google Scholar 

  59. C. Schäfer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Pressure-transmitting boundary conditions for molecular-dynamics simulations. Comp. Mater. Sci. 24, 421–429 (2002)

    Google Scholar 

  60. M. Tabetah, A. Matei, C. Constantinescu, N.P. Mortensen, M. Dinescu, J. Schou, L.V. Zhigilei, The minimum amount of “matrix” needed for matrix-assisted pulsed laser deposition of biomolecules. J. Phys. Chem. B 118, 13290–13299 (2014)

    Google Scholar 

  61. J. Zou, C. Wu, W.D. Robertson, L.V. Zhigilei, R.J.D. Miller, Molecular dynamics investigation of desorption and ion separation following picosecond infrared laser (PIRL) ablation of an ionic aqueous protein solution. J. Chem. Phys. 145, 204202 (2016)

    ADS  Google Scholar 

  62. Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    ADS  Google Scholar 

  63. Z. Lin, L.V. Zhigilei, Temperature dependences of the electron−phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation. Appl. Surf. Sci. 253, 6295–6300 (2007)

    ADS  Google Scholar 

  64. M. He, C. Wu, M.V. Shugaev, G.D. Samolyuk, L.V. Zhigilei, Computational study of short-pulse laser-induced generation of crystal defects in Ni-based single-phase binary solid-solution alloys. J. Phys. Chem. C 123, 2202–2215 (2019)

    Google Scholar 

  65. G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, A. Bakaev, Interatomic potential to study plasticity in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 19, 085008 (2011)

    ADS  Google Scholar 

  66. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014)

    Google Scholar 

  67. H. Okumura, F. Yonezawa, Reliable determination of the liquid–vapor critical point by the NVT plus test particle method. J. Phys. Soc. Jpn. 70, 1990–1994 (2001)

    ADS  Google Scholar 

  68. D.S. Gates, G. Thodos, The critical constants of the elements. AIChE J. 6, 50–54 (1960)

    Google Scholar 

  69. J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7, 9804–9828 (2011)

    ADS  Google Scholar 

  70. N.R. Pallas, B.A. Pethica, The surface tension of water. Colloids Surf. 6, 221–227 (1983)

    Google Scholar 

  71. T. Xiang, S. Ding, C. Li, S. Zheng, W. Hu, J. Wang, P. Liu, Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel. Mater. Des. 114, 65–72 (2017)

    Google Scholar 

  72. S. Riahi, B. Niroumand, A.D. Moghadam, P.K. Rohatgi, Effect of microstructure and surface features on wetting angle of a Fe-3.2wt%C.E. cast iron with water. Appl. Surf. Sci. 440, 341–350 (2018)

    ADS  Google Scholar 

  73. T. Halicioǧlu, G.M. Pound, Calculation of potential energy parameters form crystalline state properties. Phys. Status Solidi 30, 619–623 (1975)

    ADS  Google Scholar 

  74. S. Reich, J. Göttlicher, A. Ziefuss, R. Streubel, A. Letzel, A. Menzel, O. Mathon, S. Pascarelli, T. Baumbach, M. Zuber, B. Gökce, S. Barcikowski, A. Plech, In situ speciation and spatial mapping of Zn products during pulsed laser ablation in liquids (PLAL) by combined synchrotron methods. Nanoscale 12, 14011–14020 (2020)

    Google Scholar 

  75. R. J. LeVeque, Numerical methods for conservation laws. In: Lectures in Mathematics, Vol. 132 (Springer, 1992).

  76. H. Hu, T. Liu, H. Zhai, Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis. Opt. Express 23, 628–635 (2015)

    ADS  Google Scholar 

  77. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)

    Google Scholar 

  78. Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, W.J. Weber, Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015)

    ADS  Google Scholar 

  79. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl. Phys. A 79, 1643–1655 (2004)

    ADS  Google Scholar 

  80. M.V. Shugaev, L.V. Zhigilei, Thermodynamic analysis and atomistic modeling of subsurface cavitation in photomechanical spallation. Comput. Mater. Sci. 166, 311–317 (2019)

    Google Scholar 

  81. L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892–11906 (2009)

    Google Scholar 

  82. H. Huang, L.V. Zhigilei, Atomistic view of laser fragmentation of gold nanoparticles in a liquid environment. J. Phys. Chem. C 125, 13413–13432 (2021)

    Google Scholar 

  83. P. Carlès, A brief review of the thermophysical properties of supercritical fluids. J. Supercrit. Fluids 53, 2–11 (2010)

    Google Scholar 

  84. J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)

    Google Scholar 

  85. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    ADS  Google Scholar 

  86. G. Rossi, R. Ferrando, Freezing of gold nanoclusters into poly-decahedral structures. Nanotechnology 18, 225706 (2007)

    ADS  Google Scholar 

  87. C.C. Asuquo, R.K. Bowles, Molecular dynamics simulations of competitive freezing in gold nanoclusters. J. Phys. Chem. C 116, 14619–14626 (2012)

    Google Scholar 

  88. C. Wu, L.V. Zhigilei, Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J. Phys. Chem. C 120, 4438–4447 (2016)

    Google Scholar 

  89. V.G. Gryaznov, J. Heydenreich, A.M. Kaprelov, S.A. Nepijko, A.E. Romanov, J. Urban, Pentagonal symmetry and disclinations in small particles. Cryst. Res. Technol. 34, 1091–1119 (1999)

    Google Scholar 

  90. A.E. Romanov, A.L. Kolesnikova, Application of disclination concept to solid structures. Prog. Mater. Sci. 54, 740–769 (2009)

    Google Scholar 

  91. S. Dittrich, R. Streubel, C. McDonnell, H.P. Huber, S. Barcikowski, B. Gökce, Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Appl. Phys. A 125, 432 (2019)

    ADS  Google Scholar 

  92. Y. Monsa, G. Gal, N. Lerner, I. Bar, A simple strategy for enhanced production of nanoparticles by laser ablation in liquids. Nanotechnology 31, 235601 (2020)

    ADS  Google Scholar 

  93. A.R. Ziefuss, T. Steenbock, D. Benner, A. Plech, J. Göttlicher, M. Teubner, B. Grimm-Lebsanft, C. Rehbock, C. Comby-Zerbino, R. Antoine, D. Amans, I. Chakraborty, G. Bester, M. Nachev, B. Sures, M. Rübhausen, W.J. Parak, S. Barcikowski, Photoluminescence of fully inorganic colloidal gold nanocluster and their manipulation using surface charge effects. Adv. Mater. 33, 2101549 (2021)

    Google Scholar 

  94. J. Teeriniemi, M. Melander, S. Lipasti, R. Hatz, K. Laasonen, Fe-Ni nanoparticles: a multiscale first-principles study to predict geometry, structure, and catalytic activity. J. Phys. Chem. C 121, 1667–1674 (2017)

    Google Scholar 

  95. H. Rong, S. Ji, J. Zhang, D. Wang, Y. Li, Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 11, 5884 (2020)

    ADS  Google Scholar 

  96. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer-Verlag, Berlin, 2000)

    Google Scholar 

  97. R.A. Schowengerdt, Sensor Models (Chapter 3), in Remote Sensing—Models and Methods for Image Processing, 3rd edn. (Academic Press, Burlington, 2007), pp.75–125

    Google Scholar 

  98. Y. Ren, J.K. Chen, Y. Zhang, J. Huang, Ultrashort laser pulse energy deposition in metal films with phase changes. Appl. Phys. Lett. 98, 191105 (2011)

    ADS  Google Scholar 

  99. R. Streubel, G. Bendt, B. Gökce, Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids. Nanotechnology 27, 205602 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under contract number DE-SC0019191, as well as the National Science Foundation (NSF) through grants CMMI-1663429 and CBET-2126785. Leonid V. Zhigilei also acknowledges the Research Award of the Alexander von Humboldt Foundation. Computational support was provided by the NSF through the Extreme Science and Engineering Discovery Environment (Grant No. TGDMR110090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Zhigilei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhigilei, L.V. Atomistic modeling of pulsed laser ablation in liquid: spatially and time-resolved maps of transient nonequilibrium states and channels of nanoparticle formation. Appl. Phys. A 129, 288 (2023). https://doi.org/10.1007/s00339-023-06525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06525-0

Keywords

Navigation