Skip to main content
Log in

An update on the assessment of osteoporosis using radiologic techniques

  • Musculosceletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

In this article, the currently available radiologic techniques for assessing osteoporosis are reviewed. Density measurements of the skeleton using dual X-ray absorptiometry (DXA) are clinically indicated for the assessment of osteoporosis and for the evaluation of therapies. DXA is the most widely used technique for identifying patients with osteoporosis. Quantitative computed tomography (QCT) is the only method, which provides a volumetric density. Unlike DXA, QCT allows for selective trabecular measurement and is less sensitive to degenerative diseases of the spine. The analysis of bone structure in conjunction with bone density is an exciting new field in the assessment of osteoporosis. High-resolution multi-slice CT and micro-CT are useful tools for the assessment of bone microarchitecture. A growing literature indicates that quantitative ultrasound (QUS) techniques are capable of assessing fracture risk. Although the ease of use and the absence of ionizing radiation make QUS attractive, the specific role of QUS techniques in clinical practice needs further determination. Considerable progress has been made in the development of MR techniques for assessing osteoporosis during the last few years. In addition to relaxometry techniques, high-resolution MR imaging, diffusion MR imaging and in-vivo MR spectroscopy may be used to quantify trabecular bone architecture and mineral composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Compston JE, Papapoulos SE, Blanchard F (1998) Report on osteoporosis in the European Community: current status and recommendations for the future. Osteoporos Int 8:531–534

    Article  PubMed  CAS  Google Scholar 

  2. Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H, Gluer C, Adams JE (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788

    Article  PubMed  CAS  Google Scholar 

  3. Pham T, Azulay-Parrado J, Champsaur P, Chagnaud C, Legre V, Lafforgue P (2005) “Occult” osteoporotic vertebral fractures. Spine 30:2430–2435

    Article  PubMed  Google Scholar 

  4. Gehlbach SH, Bigelow C, Heimisdottir M et al (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582

    Article  PubMed  CAS  Google Scholar 

  5. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    PubMed  CAS  Google Scholar 

  6. Wu CY, Li J, Jergas M, Genant HK (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5:354–370

    Article  PubMed  CAS  Google Scholar 

  7. Lunt M, O’Neill TW, Felsenberg D et al (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone 33:505–513

    Article  PubMed  Google Scholar 

  8. Link TM, Guglielmi G, van Kuijk C, Adams JE (2005) Radiologic assessment of osteoporotic vertebral fractures: diagnostic and prognostic implications. Eur Radiol 15:1521–1532

    Article  PubMed  Google Scholar 

  9. Wintermark M, Mouhsine E, Theumann N et al (2003) Thoracolumbar spine fractures in patients who have sustained severe trauma: depiction with multi-detector row CT. Radiology 227:681–689

    Article  PubMed  Google Scholar 

  10. Stabler A, Schneider P, Link TM et al (1999) Intravertebral vacuum phenomenon following fractures: CT study on frequency and etiology. J Comput Assist Tomogr 23:976–980

    Article  PubMed  CAS  Google Scholar 

  11. Bauer JS, Muller D, Ambekar A et al (2006) Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17:608–615

    Article  PubMed  CAS  Google Scholar 

  12. Baur A, Stabler A, Arbogast S, Duerr HR, Barti R, Reiser M (2002) Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 225:730–735

    Article  PubMed  Google Scholar 

  13. Baur A, Dietrcich O, Reiser M (2003) Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 13:1699–1708

    Article  PubMed  Google Scholar 

  14. Gluer CC, Blake G, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  PubMed  CAS  Google Scholar 

  15. Grampp S, Jergas M, Gluer CC, Lang P, Brastow P, Genant HK (1993) Radiologic diagnosis of osteoporosis: current methods and perspectives. Radiol Clin North Am 31:1131–1145

    Google Scholar 

  16. Gluer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14:1952–1962

    Article  PubMed  CAS  Google Scholar 

  17. Adams JE (2003) Dual-energy X-ray absorptiometry. In: Grampp S (ed) Radiology of osteoporosis. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Damilakis J, Papadokostakis G, Perisinakis K, Hadjipavlou A, Gourtsoyiannis N (2003) Can radial bone mineral density and quantitative ultrasound measurements reduce the number of women who need axial density skeletal assessment? Osteoporos Int 14:688–693

    Article  PubMed  CAS  Google Scholar 

  19. van Rijn RR, van der Sluis IM, Link TM, Grampp S, Guglielmi G, Imhof H, Gluer C, Adams JE, van Kuijk C (2003) Bone densitometry in children: a critical appraisal. Eur Radiol 13:700–710

    PubMed  Google Scholar 

  20. Melton LJ III, Looker A, Shepherd J, O’Connor M, Achenbach S, Riggs B, Khosla S (2005) Osteoporosis assessment by whole body region vs. site-specific DXA. Osteoporos Int 16:1558–1564

    Article  PubMed  Google Scholar 

  21. Marshall D, Johnell O, Nilsson BE (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    PubMed  CAS  Google Scholar 

  22. Augat P, Fuerst T, Genant HK (1998) Quantitative bone mineral assessment at the forearm: a review. Osteoporos Int 8:299–310

    Article  PubMed  CAS  Google Scholar 

  23. Blake GM, Harrison EJ, Adams JE (2004) Dual X-ray absorptiometry: cross-calibration of a new fan-beam system. Calcif Tissue Int 75:7–14

    Article  PubMed  CAS  Google Scholar 

  24. Blake GM, Wahner H, Fogelman I (1999) The evaluation of osteoporosis: dual energy x-ray absorptiometry and ultrasound in clinical practice. Dunitz, London

    Google Scholar 

  25. Prevrhal S, Lu Y, Genant HK, Toschke JO, Shepherd JA (2005) Towards standardization of dual X-ray absorptiometry (DXA) at the forearm: a common region of interest (ROI) improves the comparability among DXA devices. Calcif Tissue Int 76:348–354

    Article  PubMed  CAS  Google Scholar 

  26. Damilakis J, Perisinakis K, Gourtsoyiannis N (2001) Imaging ultrasonometry of the calcaneus: optimum T-score thresholds for the identification of osteoporotic subjects. Calcif Tissue Int 68:219–224

    Article  PubMed  CAS  Google Scholar 

  27. Origgi D, Vigorito S, Villa G, Bellomi M, Tosi G (2006) Survey of computed tomography techniques and absorbed dose in Italian hospitals: a comparison between two methods to estimate the dose-length product and the effective dose and to verify fulfilment of the diagnostic reference levels. Eur Radiol 16:227–237

    Article  PubMed  Google Scholar 

  28. Stratakis J, Damilakis J, Gourtsoyiannis N (2005) Organ and effective dose conversion coefficients for radiographic examinations of the pediatric skull estimated by Monte Carlo methods. Eur Radiol 15:1948–1958

    Article  PubMed  CAS  Google Scholar 

  29. Damilakis J, Perisinakis K, Vrahoriti H, Kontakis G, Varveris H, Gourtsoyiannis N (2002) Embryo/fetus radiation dose and risk from dual x-ray absorptiometry examinations. Osteoporos Int 13:716–722

    Article  PubMed  CAS  Google Scholar 

  30. Rosholm A, Hyldstrup L, Baeksgaard L, Grunkin M, Thodberg HH (2001) Estimation of bone mineral density by digital x-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int 12:961–969

    Article  PubMed  CAS  Google Scholar 

  31. Molina Toledo VA, Jergas M (2006) Age-related changes in cortical bone mass: data from a German female cohort. Eur Radiol 16:811–817

    Article  Google Scholar 

  32. Ward KA, Cotton J, Adams JE (2003) A technical and clinical evaluation of digital X-ray radiogrammetry. Osteoporos Int 14:389–395

    Article  PubMed  CAS  Google Scholar 

  33. Bouxsein M, Palermo L, Yeung C, Black D (2002) Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures. Osteoporos Int 13:358–365

    Article  PubMed  CAS  Google Scholar 

  34. Fiter J, Nolla JM, Gomez-Vaquero C, Martinez-Aguila D, Valverde J, Roig-Escofet D (2001) A comparative study of computed digital absorptiometry and conventional dual-energy x-ray absorptiometry in postomenopausal women. Osteoporos Int 12:565–569

    Article  PubMed  CAS  Google Scholar 

  35. Guglielmi G, Lang TF (2002) Quantitative computed tomography. Semin Musculoskelet Radiol 6:219–227

    Article  PubMed  Google Scholar 

  36. Karantanas AH, Kalef-Ezra J, Glaros D (1991) Limitations of quantitative computed tomography in corticosteroid induced osteopenia. Acta Radiol 32:339–341

    Article  PubMed  CAS  Google Scholar 

  37. Karantanas AH, Kalef-Ezra J, Glaros D (1991) Quantitative computed tomography for bone mineral measurement: technical aspects, dosimetry, normal data and clinical applications. Br J Radiol 64:298–304

    Article  PubMed  CAS  Google Scholar 

  38. Lang TF, Augat P, Lane NE, Genant HK (1998) Trochanteric hip fracture: strong association with spinal trabecular bone mineral density measured with quantitative CT. Radiology 209:525–530

    PubMed  CAS  Google Scholar 

  39. Lang TF, Guglielmi G, van Kuijk C, De Serio A, Cammisa M, Genant HK (2002) Measurement of bone mineral density at the spine and proximal femur by volumetric quantitative computed tomography and dual-energy X-ray absorptiometry in elderly women with and without vertebral fractures. Bone 30:247–250

    Article  PubMed  CAS  Google Scholar 

  40. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Gamero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  41. Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95

    Article  PubMed  CAS  Google Scholar 

  42. Gatti D, Rossini M, Zamberlan N, Braga V, Fracassi E, Adami S (1996) Effect of aging on trabecular and compact bone components of proximal and ultradistal radius. Osteoporos Int 6:55–360

    Article  Google Scholar 

  43. Grampp S, Lang P, Jergas M, Gluer CC, Mathur A, Engelke K, Genant HK (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm-short-term precision in vivo and comparison to dual x-ray absorptiometry. J Bone Miner Res 10:1566–1576

    Article  PubMed  CAS  Google Scholar 

  44. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  PubMed  CAS  Google Scholar 

  45. Ward KA, Adams JE, Hangartner TN (2005) Recommendations for thresholds for cortical bone geometry and density measurement by pQCT. Calcif Tissue Int 77:275–280

    Article  PubMed  CAS  Google Scholar 

  46. Link TM, Bauer J, Kollstedt A, Stumpf I, Hudelmaier M, Settles M, Majumdar S, Lochmuller EM, Eckstein F (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: Which site predicts fracture status of the spine best? Invest Radiol 39:487–497

    Article  PubMed  Google Scholar 

  47. Patel PV, Prevrhal S, Bauer JS, Phan C, Eckstein F, Lochmuller EM, Majumdar S, Link TM (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253

    Article  PubMed  Google Scholar 

  48. Gluer CC, Wu CY, Jergas M, Goldstein SA, Genant HK (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55:46–52

    Article  PubMed  CAS  Google Scholar 

  49. Barkmann R, Gluer CC (2003) Quantitative ultrasound. In: Grampp S (ed) Radiology of osteoporosis. Springer, Berlin Heidelberg New York

    Google Scholar 

  50. Damilakis J, Perisinakis K, Vagios E, Tsinikas D, Gourtsoyiannis N (1998) Effect of region of interest location on ultrasound measurements of the calcaneus. Calcif Tissue Int 63:300–305

    Article  PubMed  CAS  Google Scholar 

  51. Barkmann R, Kantorovich E, Singal C, Hans D, Genant HK, Heller M, Gluer CC (2000) A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitom 3:1–7

    Article  PubMed  CAS  Google Scholar 

  52. Damilakis J, Papadokostakis G, Vrahoriti H, Tsagaraki I, Perisinakis K, Hadjipavlou A, Gourtsoyiannis N (2003) Ultrasound velocity through the cortex of phalanges, radius, and tibia in normal and osteoporotic postmenopausal women using a new multisite quantitative ultrasound device. Invest Radiol 38:207–211

    Article  PubMed  Google Scholar 

  53. Guglielmi G, Njeh CF, de Terlizzi F, De Serio DA, Scillitani A, Gammisa M, Fan B, Lu Y, Genant HK (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables and vertebral fracture discrimination. Calcif Tissue Int 72:469–477

    Article  PubMed  CAS  Google Scholar 

  54. Damilakis J, Perisinakis K, Gourtsoyiannis N (2001) Imaging ultrasonometry of the calcaneus: optimum T-score thresholds for the identification of osteoporotic subjects. Calcif Tissue Int 68:219–224

    Article  PubMed  CAS  Google Scholar 

  55. Gluer CC, Hans D (1999) How to use ultrasound for risk assessment: a need for defining strategies. Osteoporos Int 9:193–195

    Article  PubMed  CAS  Google Scholar 

  56. Gluer CC, Eastell R, Reid DM (2005) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS study. J Bone Miner Res 20:536–538

    Article  Google Scholar 

  57. Stewart A, Kumar V, Reid DM (2006) Long-term fracture prediction by DXA and QUS: a 10-year prospective study. J Bone Miner Res 21:413–418

    Article  PubMed  Google Scholar 

  58. Link MT, Majumdar S, Augat P, Lin CJ, Newitt D, Lane EN, Genant HK (1998) Proximal Femur: assessment for osteoporosis with T2* decay characteristics at MR imaging. Radiology 209:531–536

    PubMed  CAS  Google Scholar 

  59. Wehrli FW, Hopkins JA, Hwang SN, Song HK, Snyder PJ, Haddad JC (2000) Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry. Radiology 217:527–538

    PubMed  CAS  Google Scholar 

  60. Capuani S, Alessandri FM, Bifone A, Maraviglia B (2002) Multiple spin echoes for the evaluation of trabecular bone quality. MAGMA 14:3–9

    PubMed  CAS  Google Scholar 

  61. Maris TG, Damilakis J, Sideri L, Deimling M, Papadokostakis G, Papakonstantinou O, Gourtsoyiannis N (2004) Assessment of the skeletal status by MR relaxometry techniques of the lumbar spine: comparison with dual X-ray absorptiometry. Eur J Radiol 50:245–256

    Article  PubMed  Google Scholar 

  62. Link TM, Vieth V, Matheis J, Newitt D, Lu Ying, Rummeny EJ, Majumdar S (2002) Bone structure of the distal radius and the calcaneus vs. BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408

    Article  PubMed  Google Scholar 

  63. Jara H, Wehrli F, Chung H, Ford J (1993) High resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29:528–539

    Article  PubMed  CAS  Google Scholar 

  64. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314

    Article  PubMed  Google Scholar 

  65. Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, Eckstein F, Majumdar S, Link TM (2006) Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5T with micro-CT as the standard of reference. Radiology 239(2):488–496

    Article  PubMed  Google Scholar 

  66. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, Deimling M (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    PubMed  CAS  Google Scholar 

  67. Yeung KWD, Wong YSS, Griffith FJ, Lau MCE (2004) Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging 19:222–228

    Article  PubMed  Google Scholar 

  68. Griffith FJ, Yeung KWD, Antonio EG, Lee KHF, Hong WLA, Wong YSS, Lau MCE, Leung CP (2005) Vertebral bone mineral density, marrow perfusion and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951

    Article  PubMed  Google Scholar 

  69. Schellinger D, Lin SC, Fertikh D, Lee SJ, Lauerman CW, Henderson F, Davis B (2000) Normal lumbar vertebrae: anatomic, age and sex variance in subjects at proton MR spectroscopy: initial experience. Radiology 215:910–916

    PubMed  CAS  Google Scholar 

  70. Schellinger D, Lin SC, Hatipoglu GH, Fertikh D (2001) Potential value of vertebral proton MR spectroscopy in determining bone weakness. Am J Neuroradiol 22:1620–1627

    PubMed  CAS  Google Scholar 

  71. Yeung KWD, Griffith FJ, Antonio EG, Lee KHF, Woo J, Leung CP (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 22:279–285

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Damilakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damilakis, J., Maris, T.G. & Karantanas, A.H. An update on the assessment of osteoporosis using radiologic techniques. Eur Radiol 17, 1591–1602 (2007). https://doi.org/10.1007/s00330-006-0511-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0511-z

Keywords

Navigation