Skip to main content
Log in

Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

An Erratum to this article was published on 08 July 2006

Abstract

Previously, high resolution MRI to assess bone structure of deep-seated regions of the skeleton such as the proximal femur was substantially limited by signal-to-noise ratio (SNR). With the advent of new optimized pulse sequences in MRI at 1.5 T and 3 T, it may now be possible to depict and quantify the trabecular microarchitecture in the proximal femur. The purpose of this study was to investigate the feasibility of assessing trabecular microstructure of the human proximal femur in vivo with MR imaging at 1.5 T and 3 T. MR images of six young, healthy male and female subjects were acquired using standard clinical 1.5-T and high-field 3-T whole-body MR scanners. Using a T2/T1-weighted 3D FIESTA sequence (and a 3D FIESTA-C sequence at 3 T to avoid susceptibility artifacts) a resolution of 0.234 × 0.234 × 1.5 mm3 was achieved in vivo. Structural parameters analogous to standard bone histomorphometry were determined in femoral head and trochanter regions of interest. Bone mineral density (BMD) measurements were also obtained using dual-energy X-ray absorptiometry (DXA) for the femoral trochanter in the same subjects. The bone structure of the proximal femur is substantially better depicted at 3 T than at 1.5 T. Correlation between the structural parameters obtained at both field strengths was up to R =0.86 for both the femoral head and the trochanteric region. However, the resolution of the images limits the application of 3D structural analysis, making the assessment more akin to 2D textural measures, which may be correlated to histomorphometric but are not identical measures. This feasibility study establishes the potential of MRI as a means of imaging proximal femur structure, and improvements in technique and resolution enhancements are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cummings SR, Black D, Nevitt M, Browner M, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt T (1993) Bone density at various sites for prediction of hip fractures. The study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  CAS  PubMed  Google Scholar 

  2. Ross P, Davis J, Wasnich R, Vogel J (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46:149–161

    Article  CAS  PubMed  Google Scholar 

  3. Cummings SR, Nevitt N, Browner W (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773

    Article  CAS  PubMed  Google Scholar 

  4. Riggs B, Hodgson W, O’Fallon M (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 322:802–809

    Article  CAS  PubMed  Google Scholar 

  5. Cann CE (1988) Quantitative CT for determination of bone mineral density a review. Radiology 166:509–522

    CAS  PubMed  Google Scholar 

  6. Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof I, Glueer C, Adams J (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788

    Article  CAS  PubMed  Google Scholar 

  7. Stenstrom M, Olander B, Lehto-Axtelius D, Madsen J, Nordsletten L, Carlsson G (2000) Bone mineral density and bone structure parameters as predictors of bone strength: an analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech 33:289–297

    Article  CAS  PubMed  Google Scholar 

  8. Wigderowitz C, Paterson C, Dashti H, McGurty D, Rowley D (2000) Prediction of bone strength from cancellous structure of the distal radius: Can we improve on DXA? Osteoporos Int 11:840–846

    Article  CAS  PubMed  Google Scholar 

  9. Chung H, Wehrli FW, Williams JL, Kugelmass SD (1993) Relationship between NMR transverse relaxation, trabecular bone architecture, and strength. Proc Natl Acad Sci U S A 90(21):10250–4

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Link TM, Majumdar S, Augat P (1998) Proximal femur: Assessment for osteoporosis with T2* decay characteristics at MR imaging. Radiology 209(2):531–536

    CAS  PubMed  Google Scholar 

  11. Wehrli FW, Hwang SN, Song HK (1998) New architectural parameters derived from micro-MRI for the prediction of trabecular bone strength. Technol Health Care 6:307–320

    CAS  PubMed  Google Scholar 

  12. Majumdar S, Genant HK 1997 Assessment of trabecular structure using high resolution magnetic resonance imaging. Stud Health Technol Inform 40:81–96

    Google Scholar 

  13. Chung HW, Wehrli FW, Williams JL, Wehrli SL (1995) Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res 10:1452–1461

    Article  CAS  PubMed  Google Scholar 

  14. Majumdar S, Kothari M, Augat P (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454

    Article  CAS  PubMed  Google Scholar 

  15. Majumdar S, Genant HK, Grampp S (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Article  CAS  PubMed  Google Scholar 

  16. Majumdar S (1998) A review of magnetic resonance (MR) imaging of trabecular bone micro-architecture: contribution to the prediction of biomechanical properties and fracture prevalence. Technol Health Care 6:321–327

    CAS  PubMed  Google Scholar 

  17. Link TM, Majumdar S, Augat P, Lin J, Newitt D, Lu Y, Lane N, Genant HK (1998) In vivo high resolution MRI of the calcaneus: Differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  CAS  PubMed  Google Scholar 

  18. Majumdar S, Link TM, Augat P, Lin J, Newitt D, Lane N, Genant HK (1999) Trabecular bone architecture in the distal radius using MR imaging in subjects with fractures of the proximal femur. Osteoporos Int 10:231–239

    Article  CAS  PubMed  Google Scholar 

  19. Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35(1):266–276

    Article  CAS  PubMed  Google Scholar 

  20. Haacke EM, Wielopolski PA, Tkach JA, Modic MT (1990) Steady-state free precession imaging in the presence of motion: application for improved visualization of the cerebrospinal fluid. Radiology 175(2):545–552

    CAS  PubMed  Google Scholar 

  21. Newitt DC, Van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13:278–287

    Article  CAS  PubMed  Google Scholar 

  22. Engelke K, Gluer CC, Genant HK (1995) Factors influencing short-term precision of dual X-ray bone absorptiometry (DXA) of spine and femur. Calcif Tissue Int 56(1):19–25

    Article  CAS  PubMed  Google Scholar 

  23. Link TM, Vieth V, Langenberg R, Meier N, Lotter A, Newitt D, Majumdar S (2003) Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165

    Article  CAS  PubMed  Google Scholar 

  24. Bangerter NK, Hargreaves BA, Vasanawala SS, Pauly JM, Gold GE, Nishimura DG (2004) Analysis of multiple-acquisition SSFP. Magn Reson Med 51:1038–1047

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work is funded by NIH grant award program number RO1-AG17762

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Krug.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00198-006-0194-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krug, R., Banerjee, S., Han, E.T. et al. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16, 1307–1314 (2005). https://doi.org/10.1007/s00198-005-1907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-1907-3

Keywords

Navigation