Skip to main content

Advertisement

Log in

Detection of osteoporotic vertebral fractures using multidetector CT

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Goals were to compare the performance of lateral radiographs and sagittal reformations (SR) of axial computed tomography (CT) datasets in identification of osteoporotic vertebral fractures and to assess for optimal slice thickness in axial CT datasets needed for reliable classification of these fractures.

Methods

Sixty-five vertebrae were harvested from 21 human cadaver spines and examined with a 64-row multidetector CT scanner. Axial images were acquired with a slice thickness of 0.6, 1, 2, 3 and 5 mm and SR were obtained using these datasets. In addition, specimens were radiographed in antero-posterior and lateral orientation. Vertebrae visualized in the different image datasets were separately graded by four radiologists according to the spinal fracture index (SFI) classification. Fracture status determined in a consensus reading of interactive reformations of the 0.6-mm CT dataset in all three dimensions served as a standard of reference in combination with pathological examinations.

Results

The average agreement for the 0.6-mm SR obtained between each radiologist and standard of reference for the grading of the fractures was very good (κ=0.81). It was good for the 1-, 2- and 3-mm SR (κ=0.70, 0.69 and 0.64), but only moderate for the radiographs (κ=0.52), and fair for the 5-mm SR (κ=0.33). When focusing only on detection of fractures, independent of the grading, all κ values improved by about 0.15, resulting in excellent values for the 0.6-mm through 3-mm SR (0.95<κ<0.79) and good values for the radiographs (κ=0.72). Ninety-five percent of the fractures could be identified using the 1-mm SR, but 18% of the fractures were missed on the radiographs.

Conclusions

Sagittal CT reformations could more accurately assess vertebral fractures than standard radiographs. But for reliable detection of these fractures, SR derived from axial images with a slice thickness of 3 mm or less are required. The thinnest available axial slice thickness performed best in fracture grading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Center JR, Nguyen TV, Schneider D, Sambrook NP, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  PubMed  CAS  Google Scholar 

  2. O’Neill TW, Cockerill W, Matthis C, Raspe HH, Lunt M, Cooper C, Banzer D, Cannata JB, Naves M, Felsch B, Felsenberg D, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lyritis G, Masaryk P, Poor G, Reid DM, Reisinger W, Scheidt-Nave C, Stepan JJ, Todd CJ, Woolf AD, Reeve J, Silman AJ (2004) Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporos Int 15:760–765

    Article  PubMed  CAS  Google Scholar 

  3. Cockerill W, Lunt M, Silman AJ, Cooper C, Lips P, Bhalla AK, Cannata JB, Eastell R, Felsenberg D, Gennari C, Johnell O, Kanis JA, Kiss C, Masaryk P, Naves M, Poor G, Raspe H, Reid DM, Reeve J, Stepan J, Todd C, Woolf AD, O’Neill TW (2004) Health-related quality of life and radiographic vertebral fracture. Osteoporos Int 15:113–119

    Article  PubMed  CAS  Google Scholar 

  4. Doherty DA, Sanders KM, Kotowicz MA, Prince RL (2001) Lifetime and five-year age-specific risks of first and subsequent osteoporotic fractures in postmenopausal women. Osteoporos Int 12:16–23

    Article  PubMed  CAS  Google Scholar 

  5. Link TM, Guglielmi G, Kuijk van C, Adams J (2005) Radiologic assessment of osteoporotic vertebral fractures: diagnostic and prognostic implications. Eur Radiol 15:1521–1532

    Article  PubMed  Google Scholar 

  6. Ensrud K, Thompson D, Cauley J, Nevitt M, Kado D, Hochberg M, Santora A2, Black D (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc 48:241–249

    PubMed  CAS  Google Scholar 

  7. Gehlbach S, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood J (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582

    Article  PubMed  CAS  Google Scholar 

  8. Kim N, Rowe BH, Raymond G, Jen H, Colman I, Jackson SA, Siminoski KG, Chahal AM, Folk D, Majumdar SR (2004) Underreporting of vertebral fractures on routine chest radiography. AJR Am J Roentgenol 182:297–300

    PubMed  CAS  Google Scholar 

  9. Mueller D, Isbary M, Boehm H, Bauer JS, Rummeny EJ, Link TM (2004) Recognition of osteoporosis-related vertebral fractures on chest radiographs in postmenopausal women. Radiology 233:305

    Article  PubMed  Google Scholar 

  10. Mui LW, Haramati LB, Alterman DD, Haramati N, Zelefsky MN, Hamerman D (2003) Evaluation of vertebral fractures on lateral chest radiographs of inner-city postmenopausal women. 73:550–554

    Article  PubMed  CAS  Google Scholar 

  11. Delmas PD, van de LL, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563

    Article  PubMed  Google Scholar 

  12. Mueller D, Zeile M, Bauer JS, Rummeny EJ, Link TM (2005) Vertebral fractures and other spine pathologies only detected with sagittal reformations of routine thoracic and abdominal multisclice CT images. Submitted to RSNA

  13. Ohnesorge B, Flohr T, Schaller S, Klingenbeck-Regn K, Becker C, Schopf UJ, Bruning R, Reiser MF (1999) [The technical bases and uses of multi-slice CT]. Radiologe 39:923–931

    Article  PubMed  CAS  Google Scholar 

  14. Brandt MM, Wahl WL, Yeom K, Kazerooni E, Wang SC (2004) Computed tomographic scanning reduces cost and time of complete spine evaluation. J Trauma 56:1022–1026

    PubMed  Google Scholar 

  15. Rubin GD (2000) Data explosion: the challenge of multidetector-row CT. Eur J Radiol 36:74–80

    Article  PubMed  CAS  Google Scholar 

  16. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    PubMed  CAS  Google Scholar 

  17. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  18. Altman D (1991) Practical statistics for medical research. Chapman and Hall, London

  19. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  20. Begemann PG, Kemper J, Gatzka C, Stork A, Nolte-Ernsting C, Adam G (2004) Value of multiplanar reformations (MPR) in multidetector CT (MDCT) of acute vertebral fractures: do we still have to read the transverse images? J Comput Assist Tomogr 28:572–580

    Article  PubMed  Google Scholar 

  21. Gestring ML, Gracias VH, Feliciano MA, Reilly PM, Shapiro MB, Johnson JW, Klein W, Kauder DR, Schwab CW (2002) Evaluation of the lower spine after blunt trauma using abdominal computed tomographic scanning supplemented with lateral scanograms. J Trauma 53:9–14

    Article  PubMed  Google Scholar 

  22. Wintermark M, Mouhsine E, Theumann N, Mordasini P, van Melle G, Leyvraz PF, Schnyder P (2003) Thoracolumbar spine fractures in patients who have sustained severe trauma: depiction with multi-detector row CT. Radiology 227:681–689

    Article  PubMed  Google Scholar 

  23. Link TM, Meier N, Rummeny EJ, Garman S, Steinbeck J, Schröder M, Oelerich M, Häussler MD (1996) Detection of artificial spine fractures using helical and conventional CT. Radiology 198:515–519

    PubMed  CAS  Google Scholar 

  24. Blackmore CC, Mann FA, Wilson AJ (2000) Helical CT in the primary trauma evaluation of the cervical spine: an evidence-based approach. Skeletal Radiol 29:632–639

    Article  PubMed  CAS  Google Scholar 

  25. Daffner RH, Daffner SD (2002) Vertebral injuries: detection and implications. Eur J Radiol 42:100–116

    Article  PubMed  Google Scholar 

  26. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ, III (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  PubMed  CAS  Google Scholar 

  27. Leidig-Bruckner G, Genant HK, Minne HW, Storm T, Thamsborg G, Bruckner T, Sauer P, Schilling T, Soerensen OH, Ziegler R (1994) Comparison of a semiquantitative and a quantitative method for assessing vertebral fractures in osteoporosis. Bone 15:437–442

    Article  PubMed  Google Scholar 

  28. Barnett E, Nordin B (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11:166–174

    Article  PubMed  CAS  Google Scholar 

  29. McCloskey EV, Spector TD, Eyres KS, Fern ED, O'Rourke N, Vasikaran S, Kanis JA (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. J Bone Miner Res 8:1137–1148

    PubMed  Google Scholar 

  30. Wu C, van Kuijk C, Li J, Jiang Y, Chan M, Countryman P, Genant HK (2000) Comparison of digitized images with original radiography for semiquantitative assessment of osteoporotic fractures. Osteoporos Int 11:25–30

    Article  PubMed  Google Scholar 

  31. Ettinger B, Block JE, Smith R, Cummings SR, Harris ST, Genant HK (1988) An examination of the association between vertebral deformities, physical disabilities and psychosocial problems. Maturitas 10:283–296

    Article  PubMed  CAS  Google Scholar 

  32. Storm T, Thamsborg G, Steiniche T, Genant HK, Sorensen OH (1990) Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 322:1265–1271

    Article  PubMed  CAS  Google Scholar 

  33. Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR (1999) Defining incident vertebral deformity: a prospective comparison of several approaches. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:90–101

    Article  PubMed  CAS  Google Scholar 

  34. Lunt M, O’Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C, Silman AJ (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone 33:505–513

    Article  PubMed  Google Scholar 

  35. UNESCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000) Sources and effects of ionising radiation. Vol 1: Sources, Annex D, Medical radiation exposures. United Nations, New York

  36. Hart D, Wall BF (2004) UK population dose from medical X-ray examinations. Eur J Radiol 50:285–291

    Article  PubMed  CAS  Google Scholar 

  37. Ismail AA, Cockerill W, Cooper C, Finn JD, Abendroth K, Parisi G, Banzer D, Benevolenskaya LI, Bhalla AK, Armas JB, Cannata JB, Delmas PD, Dequeker J, Dilsen G, Eastell R, Ershova O, Falch JA, Felsch B, Havelka S, Hoszowski K, Jajic I, Kragl U, Johnell O, Lopez Vaz A, Lorenc R, Lyritis G, Marchand F, Masaryk P, Matthis C, Miazgowski T, Pols HA, Poor G, Rapado A, Raspe HH, Reid DM, Reisinger W, Janott J, Scheidt-Nave C, Stepan J, Todd C, Weber K, Woolf AD, Ambrecht G, Gowin W, Felsenberg D, Lunt M, Kanis JA, Reeve J, Silman AJ, O’Neill TW (2001) Prevalent vertebral deformity predicts incident hip though not distal forearm fracture: results from the European Prospective Osteoporosis Study. Osteoporos Int 12:85–90

    Article  PubMed  CAS  Google Scholar 

  38. Kado DM, Duong T, Stone KL, Ensrud KE, Nevitt MC, Greendale GA, Cummings SR (2003) Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int 14:589–594

    Article  PubMed  CAS  Google Scholar 

  39. Melton LJ, III, Atkinson EJ, Khosla S, Oberg AL, Riggs BL (2005) Evaluation of a prediction model for long-term fracture risk. J Bone Miner Res 20:551–556

    Article  PubMed  Google Scholar 

  40. Takada M, Wu CY, Lang TF, Genant HK (1998) Vertebral fracture assessment using the lateral scoutview of computed tomography in comparison with radiographs. Osteoporos Int 8:197–203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG LO 730/3–2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, J.S., Müller, D., Ambekar, A. et al. Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17, 608–615 (2006). https://doi.org/10.1007/s00198-005-0023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-0023-8

Keywords

Navigation