Skip to main content

Advertisement

Log in

Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant salt stress tolerance.

Abstract

Switchgrass (Panicum virgatum L.) has developed into a dedicated bioenergy crop. To improve the biomass production of switchgrass grown on different types of soil, abiotic stress tolerance traits are considered for its genetic improvement. Proline accumulation is a widespread response when plants are subjected to abiotic stresses such as drought, cold and salinity. In plants, P5CS gene encodes the key regulatory enzyme that plays a crucial role in proline biosynthesis. Here, we introduced the PuP5CS gene (from Puccinellia chinampoensis) into switchgrass by Agrobacterium-mediated transformation. Transgenic lines overexpressing the PuP5CS gene showed phenotypic advantages, in leaf width, internode diameter, internode length, tiller numbers and precocious flowering under normal conditions, and the transgenic lines displayed better regenerative capacity in forming more tillers after harvest. Moreover, the PuP5CS gene enhanced the salt tolerance of transgenic switchgrass by altering a wide range of physiological responses. In accordance with the physiological results, histological analysis of cross sections through the leaf blade showed that the areas of bulliform cells and bundle sheath cells were significantly increased in PuP5CS-overexpressing leaves. The expression levels of ROS scavenging-associated genes in transgenic plants were higher than in control plants under salt stress. The results show that genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alia, Saradhi PP, Mohanty P (1993) Proline in relation to free radical production in seedlings of Brassica juncea, raised under sodium chloride stress. Plant Soil 155–156(1):497–500

    Article  Google Scholar 

  • Armengaud P, Thiery L, Buhot N, Grenier-de MD, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120(3):442–450

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Ben RK, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80C:278–284

    Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum, L.) with the P5CSF129A, gene for osmoregulation with implications on drought tolerance. Mol Breed 23(4):591–606

    Article  CAS  Google Scholar 

  • Chen W, Baldwin TC (2007) An improved method for the fixation, embedding and immunofluorescence labeling of resin-embedded plant tissue. Plant Mol Biol Rep 25(1–2):27–35

    Article  CAS  Google Scholar 

  • Chen H, He H, Yu D (2011) Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Physiol Plant 141(1):11–18

    Article  PubMed  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder J (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4(4):215–223

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15

    Google Scholar 

  • Funck D, Winter G, Baumgarten L, Forlani G (2012) Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol 12(1):191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardin CF, Fu C, Hisano H, Xiao X, Shen H, Stewart CN (2013) Standardization of switchgrass sample collection for cell wall and biomass trait analysis. BioEnergy Res 6(2):755–762

    Article  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21(2):79–102

    Article  CAS  Google Scholar 

  • Hmidasayari A, Gargouribouzid R, Bidani A, Jaoua L, Savoure A, Jaoua S (2005) Overexpression of delta1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752

    Article  CAS  Google Scholar 

  • Houimli SIM, Denden M, Mouhandes BD (2010) Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. Eurasian J Biosci 4(4):96–104

    Article  CAS  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89(19):9354–9358

    Article  PubMed  CAS  Google Scholar 

  • Huang YH, Guan C, Liu YR, Zhang YW (2017) Enhanced growth performance and salinity tolerance in transgenic switchgrass via overexpressing vacuolar Na+(K+)/H+ antiporter gene (PvNHX1). Front Plant Sci 8:458

    PubMed  PubMed Central  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8:e71136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaikavoosi K, Kad TD, Zanan RL, Altafhusain BN (2015) 2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through ∆1-pyrroline-5-carboxylate synthetase (P5CS) gene transformation. Appl Biochem Biotechnol 177(7):1466–1479

    Article  PubMed  CAS  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29(7):1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Kavi KPB, Hima KP, Sunita MS, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6(544):544

    Google Scholar 

  • Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Biores Technol 100:1515–1523

    Article  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu CA, Verma DP (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108(4):1387–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchishinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8(8):1323–1335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kökten K, Karaköy T, BakoğLu A (2010) Determination of salinity tolerance of some lentil (Lens culinaris M.) varieties. J Food Agric Environ 8(1):140–143

    Google Scholar 

  • Kumar V, Shriram V, Kishor PBK, Narendra J, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4(1):37–48

    Article  Google Scholar 

  • Li ZG, Baldwin CM, Hu Q, Liu HB, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33(2):272–289

    Article  PubMed  CAS  Google Scholar 

  • Li H, Guo H, Zhang X, Zhang XZ, Fu JM (2014) Expression profiles of Pr5CS1, and Pr5CS2, genes and proline accumulation under salinity stress in perennial ryegrass (Lolium perenne L.). Plant Breed 133(2):243–249

    Article  CAS  Google Scholar 

  • Liu YR, Cen HF, Yan JP, Zhang YW, Zhang WJ (2015) Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars. Plant Cell Rep 34(7):1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Liu SJ, Huang YH, He CJ, Zhang YW (2016) Cloning, bioinformatics and transcriptional analysis of caffeoyl-coenzyme a 3-O-methyltransferase in switchgrass under abiotic stress. J Integr Agri 15(3):636–649

    Article  CAS  Google Scholar 

  • Lo SF, Ho TD, Liu YL, Chen KT (2017) Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol J 15(7):850–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLaughlin SB, Kiniry JR, Taliaferro CM (2006) Projecting yield and utilization potential of switchgrass as an energy crop. Adv Agron 90:267–297

    Article  Google Scholar 

  • Munns R, Wallace PA, Teakle NL, Colmer TD (2010) Measuring soluble ion concentrations (Na+, K+, Cl) in salt-treated plants. Methods Mol Biol 639:371–382

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ, Cushman JC, Koster KL, Zhu JK (2010) Plant stress tolerance. Methods Mol Biol 2:39

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324

    Article  PubMed  CAS  Google Scholar 

  • Pavei D, Gonçalves-Vidigal MC, Schuelter AR (2016) Response to water stress in transgenic (p5cs gene) wheat plants (Triticum aestivum L.). Aust J Crop Sci 10(6):776–783

    Article  CAS  Google Scholar 

  • Peter K, Mohr H (1974) Control of phenylalanine ammonia-lyase and ascorbate oxidase in the mustard seedling by light and hoagland’s nutrient solution. Z Nat C 29(5–6):222–228

    CAS  Google Scholar 

  • Porgali ZB, Yurekli F (2005) Salt stress-induced alterations in proline accumulation, relative water content and superoxide dismutase (SOD) activity in salt sensitive Lycopersicon esculentum and salt-tolerant L. pennellii. Acta Bot Hung 47(1):173–182

    Article  CAS  Google Scholar 

  • Rai AN, Penna S (2013) Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol Biol Rep 40(11):6429–6435

    Article  PubMed  CAS  Google Scholar 

  • Redondogómez S, Mateosnaranjo E, Davy AJ (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub atriplex portulacoides. Ann Bot 100(3):555–563

    Article  CAS  Google Scholar 

  • Richter JA, Erban A, Kopka J (2015) Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Sci Int J Exp Plant Biol 233:107–115

    CAS  Google Scholar 

  • Said KT, Busaidi A, Farag KM (2015) The use of electrolyte leakage procedure in assessing heat and salt tolerance of Ruzaiz date palm (Phoenix dactylifera L.) cultivar regenerated by tissue culture and offshoots and treatments to alleviate the stressful injury. J Hortic For 7:104–111

    Article  Google Scholar 

  • Sakhno LO (2013) Plant biomass increase: recent advances in genetic engineering. Biopolym Cell 29(6):443–453

    Article  CAS  Google Scholar 

  • Servet C, Ghelis T, Richard L, Zilberstein A, Savoure A (2012) Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Front Biosci 17(1):607

    Article  CAS  Google Scholar 

  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ 33(11):1838–1851

    Article  PubMed  CAS  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17(3):315–319

    Article  PubMed  CAS  Google Scholar 

  • Strizhov N, Abrahám E, Okrész L, Blickling S, Zilberstein A (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12(3):557–569

    Article  PubMed  CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166(4):941–948

    Article  CAS  Google Scholar 

  • Su M, Li XF, Ma XY, Peng XJ, Zhao A, Cheng LQ (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and JA treatment. Plant Sci 181(6):652–659

    Article  PubMed  CAS  Google Scholar 

  • Surekha C, Kumari KN, Aruna LV, Suneetha G, Arundhati A, Kavi KPB (2014) Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeon pea enhances proline accumulation and salt tolerance. Plant Cell Tissue Organ Cult 116(1):27–36

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  PubMed  CAS  Google Scholar 

  • Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53(1):11–28

    Article  PubMed  CAS  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Capim CA, Molinari H, Marur CJ (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Ding MD, Pang Y, Gu XG, Gao LP, Xia T (2013) Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves. Am J Biochem Biotechnol 9(3):6293–6297

    Article  CAS  Google Scholar 

  • Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H (2014) Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in Maize. Plant Cell 26(6):2582–2600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K (1995) Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J Cell Mol Biol 7(5):751–760

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Tang W, Liu J, Liu Y (2014) Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol 20(4):717–722

    Google Scholar 

  • Zhu X, Li X, Zou Y, Chen W, Lu W (2012) Cloning, characterization and expression analysis of ∆1-pyrroline-5-carboxylate synthetase (P5CS) gene in harvested papaya (Carica papaya) fruit under temperature stress. Food Res Int 49(1):272–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the Ministry of Science And Technology, China (2012AA101801), National Natural Science Foundation of China (31672478) and Natural Science Foundation of Beijing (6162016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Leena Tripathi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 623 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, C., Huang, YH., Cui, X. et al. Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.). Plant Cell Rep 37, 1187–1199 (2018). https://doi.org/10.1007/s00299-018-2304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2304-7

Keywords

Navigation