Skip to main content
Log in

Molecular evolution of plant P5CS gene involved in proline biosynthesis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The P5CS ({Delta} 1-Pyrroline–5-Carboxylate Synthetase) gene encodes for a bifunctional enzyme that catalyzes the rate limiting reaction in proline biosynthesis in living organisms. A wide range of multifunctional roles of proline have now been shown in stress defense. The proline biosynthetic genes, especially, P5CS is commonly used in metabolic engineering for proline overproduction conferring stress tolerance in plants. The gene is functionally well characterized at the molecular level, but there is more to learn about its evolutionary path in the plant kingdom, particularly the drive behind functional (osmoprotective and developmental) divergence of duplication of P5CS genes. In this review, we present the current understanding of the evolutionary trail of plant P5CS gene which plays a key role in stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  2. Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  PubMed  CAS  Google Scholar 

  3. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  4. Kishor PBK, Sangam S, Amrutha RN, Sri-Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curl Sci 88:3

    Google Scholar 

  5. Szabados L, Savoure’ A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  PubMed  Google Scholar 

  6. Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  7. Hare PD, Cress WA (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  8. Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712

    Article  PubMed  CAS  Google Scholar 

  9. Gruszka Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Correa Molinari HB, Marur CJ, Esteves Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  Google Scholar 

  10. Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  PubMed  CAS  Google Scholar 

  11. Delauney AJ, Hu CA, Kishor PBK, Verma DPS (1993) Cloning of ornithine 6-aminotransferase cDNA from Vigna aconit oliab y trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268:18673–18678

    PubMed  CAS  Google Scholar 

  12. Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  PubMed  Google Scholar 

  13. Verdoy D, De la Pena TC, Redondo FJ, Lucas MM, Pueyo JJ (2006) Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant, Cell Environ 29:1913–1923

    Article  CAS  Google Scholar 

  14. Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  Google Scholar 

  15. Strizhov N, Ábrahám E, Ökrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  PubMed  CAS  Google Scholar 

  16. Hur J, Hong Jong K, Lee C-H, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  17. Archana K, Patade VY, Suprasanna P (2008) In silico analysis of P5CS gene evolution in plants. Online J Bioinfo 9(1):1–11

    Google Scholar 

  18. Turchetto-Zolet AN, Margis-Pinheiro M, Margis R (2009) The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Mol Genet Genomics 281(1):87–97

    Article  PubMed  CAS  Google Scholar 

  19. Rayapati PJ, Stewart CR, Hack E (1989) Pyrroline-5-carboxylate reductase is in pea (Pisum sativum L.) leaf chloroplasts. Plant Physiol 91:581–586

    Article  PubMed  CAS  Google Scholar 

  20. Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A (1998) Isolation and characterization of two different cDNAs of delta1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol 38:755–764

    Article  PubMed  CAS  Google Scholar 

  21. Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structure of two evolutionary divergent genes for {Delta} 1-Pyrroline–5-Carboxylate Synthetase from tomato. Plant Physiol 118:661–674

    Article  PubMed  CAS  Google Scholar 

  22. Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89(19):9354–9358

    Article  PubMed  CAS  Google Scholar 

  23. Roy S (1999) Multifunctional enzyme and evolution of biosynthetic pathways: retro-evolution by jumps. Proteins: Struct, Funct Genet 37:303–309

    Article  CAS  Google Scholar 

  24. Marin CM, Ortiz FG, Arellano IP, Cervera J, Fita I, Rubio V (2007) A novel two domain architecture within the amino acid kinase family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. J Mol Biol 367(5):1431–1446

    Article  Google Scholar 

  25. Kafri R, Springer M, Pilpel Y (2009) Genetic Redundancy: new Tricks for Old Genes. Cell 136:389–392

    Article  PubMed  CAS  Google Scholar 

  26. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298

    Article  Google Scholar 

  27. Sharp PM (1997) In search of molecular Darwinism. Nature 385:111–112

    Article  PubMed  Google Scholar 

  28. García-Ríos M, Fujita T, LaRosa PC, Locy RD, Clithero JM, Bressan RA, Csonka LN (1997) Cloning of a polycistronic cDNA from tomato encoding gamma-glutamyl kinase and gamma-glutamyl phosphate reductase. Proc Natl Acad Sci USA 94(15):8249–8254

    Article  PubMed  Google Scholar 

  29. Savouré A, Jaoua S, Hua XJ, Ardiles W, Van Montagu M, Verbruggen N (1995) Isolation and characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis. FEBS Lett 372:13–19

    Article  PubMed  Google Scholar 

  30. Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7(5):751–760

    Article  PubMed  CAS  Google Scholar 

  31. Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant environment interaction. Arabidopsis Book. 8:e0140

    Article  PubMed  Google Scholar 

  32. Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprassana Penna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, A.N., Penna, S. Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol Biol Rep 40, 6429–6435 (2013). https://doi.org/10.1007/s11033-013-2757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2757-2

Keywords

Navigation