Skip to main content
Log in

Callogenesis and rhizogenesis in date palm leaf segments: are there similarities between the two auxin-induced pathways?

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In date palm (Phoenix dactylifera L. cv. Ahmar, Arecaceae), as for many monocotyledons, callogenesis is a prerequisite for the initiation of somatic embryogenesis, and requires the presence of auxin in the medium. Immature leaf explants were cultivated in medium supplemented with either 1 or 54 μM 1-naphtaleneacetic acid in order to induce either rhizogenesis or callogenesis. Histological studies performed throughout the culture period established that precocious cell reactivation is similar in both morphogenetic pathways. Early cytological modifications are associated with cell reactivation and are observed in the pluripotent cells of perivascular sheaths. Divergence between the callogenesis and rhizogenesis pathways is observed later, during the subsequent determination and morphological differentiation phases. We established that in date palm, the rhizogenesis and callogenesis pathways are initiated from the same cell type, the ultimate developmental fate depending upon auxin concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CIM:

Callus induction medium

FP:

Fascicular parenchyma

NAA:

1-Naphtaleneacetic acid

NBB:

Naphtol blue-black

PAS:

Periodic acid Schiff

RP:

Root primordium

RIM:

Root induction medium

References

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393. doi:10.1016/S1360-1385(00)01725-8

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Scarpella E, Friml J, Marcos D (2006) Control leaf vascular patterning by polar axis. Dev Biol 295:S403. doi:10.1016/j.ydbio.2006.04.236

    Article  Google Scholar 

  • Besse I, Verdeil JL, Duval Y, Sotta B, Maldiney R, Miginiac R, Migininac E (1992) Oil palm (Elaeis guineensis Jacq.) clonal fidelity: endogenous cytokinins and indolacetic acid in embryogenic callus cultures. J Exp Bot 43:983–989. doi:10.1093/jxb/43.7.983

    Article  CAS  Google Scholar 

  • Blervacq AS, Dubois T, Dubois J, Vasseur J (1995) First divisions of somatic embryogenic cells in Cichorium hybrid ‘474’. Protoplasma 186:163–168. doi:10.1007/BF01281326

    Article  Google Scholar 

  • Buffard-Morel J, Verdeil JL, Pannetier C (1992) Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir d’explant foliaire: étude histologique. Can J Bot 70:735–741

    Google Scholar 

  • Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Cell wall differentiation during early somatic embryogenesis. Can J Bot 78:816–823. doi:10.1139/cjb-78-6-816

    Article  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293. doi:10.1016/0012-1606(83)90029-5

    Article  PubMed  CAS  Google Scholar 

  • Costa S, Shaw P (2007) “Open minded” cells: how cells can change fate. Trends Cell Biol 17:1001–1106. doi:10.1016/j.tcb.2006.12.005

    Article  Google Scholar 

  • D’Onofrio C, Morini S (2006) Somatic embryo, adventitious root and shoot regeneration in vitro grown quince leaves as influenced by treatments of different length with growth regulators. Sci Hortic (Amsterdam) 107:194–199. doi:10.1016/j.scienta.2005.05.016

    Article  Google Scholar 

  • Dubois T, Guedira M, Dubois J, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium. A histological and SEM study of early stages. Protoplasma 162:120–127. doi:10.1007/BF02562555

    Article  Google Scholar 

  • Dussert S, Verdeil JL, Rival A, Noirot M, Buffard-Morel J (1995) Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses. Plant Sci 106:186–196. doi:10.1016/0168-9452(95)04079-A

    Article  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Org. Cult. 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  • Fernando SC, Gamage CK (2000) Abscisic acid induced somatic embryogenesis in immature embryo of coconut (Cocos nucifera L.). Plant Sci 151:193–198. doi:10.1016/S0168-9452(99)00218-6

    Article  PubMed  CAS  Google Scholar 

  • Fernando SC, Verdeil JL, Hocher V, Weerakoon LK, Khirimburegama K (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera L. Plant Cell Tiss. Org. Cult. 72:281–284. doi:10.1023/A:1022345011002

    Article  Google Scholar 

  • Filippi SB, Appezzato-da-gloria B, Rodriguez APM (2001) Histological changes in banana explants, cv. Nanicão (Musa spp., Group AAA), submitted to different auxins for induction of somatic embryogenesis. Rev. Brasil. Bot., São Paulo V24(suppl 4):595–602

    Google Scholar 

  • Fisher DB (1968) Protein staining of ribonned epon section for light microscopy. Histochemie 16:92–96. doi:10.1007/BF00306214

    Article  PubMed  CAS  Google Scholar 

  • Fobert PR, Webb DT (1988) Effects of polyamine precursors and polyamine biosynthesis inhibitors on somatic embryogenesis from eggplant (Solanum melongena) cotyledons. Can J Bot 66:1734–1742

    CAS  Google Scholar 

  • Hunault G (1979) Recherches sur le comportement de fragments d’organes et des tissus de monocotylédones cultivés in vitro. le Botaniste 2:259–287

    Google Scholar 

  • Jordan M, Humam M, Bieri S, Christen P, Poblete E, Munoz O (2006) In vitro shoot and root organogenesis, plant regeneration and production of tropane alkaloids in some species of Shizanthus. Phytochemistry 67:570–578. doi:10.1016/j.phytochem.2005.12.007

    Article  PubMed  CAS  Google Scholar 

  • Kanmegne G, Omokolo ND (2003) Changes in phenol content and peroxidase activity during in vitro organogenesis in Xanthosoma sagittifolium L. Plant Growth Regul 40:53–57. doi:10.1023/A:1023076629044

    Article  CAS  Google Scholar 

  • Laparra H, Bronner R, Hahne G (1997) Amyloplast as a possible indicator of morphogenic potential in sunflower protoplasts. Plant Sci 122:183–192. doi:10.1016/S0168-9452(96)04536-0

    Article  CAS  Google Scholar 

  • Morel G, Wetmore RM (1951) Fern callus tissue culture. Am J Bot 38:141–143. doi:10.2307/2437837

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and biassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nyman LP, Gonzales CJ, Arditti J (1983) Reversible structural changes associated with callus formation and plantlet development from aseptically cultured shoot of Taro. Ann Bot (Lond) 51:279–286

    Google Scholar 

  • Osawa S, Yasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125:135–142

    Google Scholar 

  • Pannetier C, Arthuis P, Levoux D (1981) Néoformation de plantes d’Eleais guineensis à partir de cals primaires obtenus sur fragments foliaires cultivés in vitro. Oleagineux 36:119–122

    Google Scholar 

  • Puigderrajols P, Mir G, Molinas M (2001) Ultrastructure of early secondary somatic embryogenesis by multicellular and unicellular pathways in cork oak (Quercus suber L.). Ann Bot (Lond) 87:179–189. doi:10.1006/anbo.2000.1317

    Article  Google Scholar 

  • Ramanayake SMSD, Wanniarachchi WAVR (2002) Organogenesis in callus derived from and adult giant bamboo (Dendrocalamus giganteus wall. Ex. Munro). Sci Hortic (Amsterdam) 98:195–200. doi:10.1016/S0304-4238(02)00204-2

    Article  Google Scholar 

  • Rose RJ, Wang XD, Nolan KE, Rolfe BG (2006) Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene. J Exp Bot 57:2227–2235. doi:10.1093/jxb/erj187

    Article  PubMed  CAS  Google Scholar 

  • Sané D, Aberlenc-Bertossi F, Gassama-Dia YK, Sagna M, Trouslot MF, Duval Y, Borgel A (2006) Histological analysis of callogenesis and somatic embryogenesis from cell suspension of date palm (Phoenix dactylifera L.). Ann Bot (Lond) 98:301–308. doi:10.1093/aob/mcl104

    Article  Google Scholar 

  • Schwendiman J, Pannetier C, Michaux-Ferriere N (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot (Lond) 62:43–52

    Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64. doi:10.1016/S1369-5266(99)80012-0

    Article  PubMed  CAS  Google Scholar 

  • Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13:218–221. doi:10.1007/BF00239896

    Article  CAS  Google Scholar 

  • Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot (Lond) 88:9–18. doi:10.1006/anbo.2001.1408

    Article  Google Scholar 

  • Verdeil L, Alemanno L, Niemenack N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252. doi:10.1016/j.tplants.2007.04.002

    Article  PubMed  CAS  Google Scholar 

  • Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBASTOMA-RELATED gene regulates stem cells maintenance in Arabidopsis roots. Cell 123:1337–1349. doi:10.1016/j.cell.2005.09.042

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, actions and interaction. Ann Bot (Lond) 95:707–735. doi:10.1093/aob/mci083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Saïd-Ahmed gratefully acknowledges grant from EGIDE-Ministère des affaires étrangères (France) for his Master’s degree. B. Gueye and D. Sané were supported by grants from the department for capacity-building support to scientific communities in the South (DSF, Institut de Recherche pour le Développement-IRD). Histological sections of nodular callus and root/root-like structure at d63 were kindly provided by Mrs M. Collin (IRD). F. Aberlenc-Bertossi (IRD) is also thanked for her comments on oil and date palms histology. The authors are indebted to Prof S. Hawkins (UMR 1281, USTL) for his critical reading of the manuscript, valuable discussion and checking English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-S. Blervacq.

Additional information

B. Gueye and H. Saïd-Ahmed have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueye, B., Saïd-Ahmed, H., Morcillo, F. et al. Callogenesis and rhizogenesis in date palm leaf segments: are there similarities between the two auxin-induced pathways?. Plant Cell Tiss Organ Cult 98, 47–58 (2009). https://doi.org/10.1007/s11240-009-9537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9537-7

Keywords

Navigation