Skip to main content
Log in

Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The effects of aluminum (Al) on root elongation, lipid peroxidation, hydrogen peroxide (H2O2) accumulation, antioxidant levels, antioxidant enzymatic activity, and lignin content in the roots of the Al-tolerant rice variety azucena and the Al-sensitive variety IR64 were investigated. Treatment with Al induced a greater decrease in root elongation and a greater increase in H2O2 and lipid peroxidation as determined by the total thiobarbituric acid-reactive substance (TBARS) level in IR64 than in azucena. Azucena had significantly higher levels of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase GSH POD activity compared with IR64. The concentrations of reduced glutathione (GSH) and ascorbic acid, and the GSH/GSSG ratio (reduced vs. oxidized glutathione) were also higher in azucena than in IR64 in the presence of Al. The addition of 1 mg/L GSH improved root elongation in both varieties and decreased H2O2 production under Al stress. By contrast, treatment with buthionine sulfoximine, a specific inhibitor of GSH synthesis, decreased root elongation in azucena and stimulated H2O2 production in both varieties. Moreover, Al treatment significantly increased the cytoplasmic activity of peroxidase (POD) as well as the levels of POD bound ionically and covalently to cell walls in the Al-sensitive variety. The lignin content was also increased. Treatment with exogenous H2O2 also increased the lignin content and decreased root elongation in IR64. These results suggest that Al induces lignification in the roots of Al-sensitive rice varieties, probably through an increase in H2O2 accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  PubMed  CAS  Google Scholar 

  • Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agric Biol Chem 45:1289–1290

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Blee KA, Choi JW, O’Connell AP, Schuch W, Lewis NG, Bolwell GP (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64:163–176

    Article  PubMed  CAS  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Córdoba-Pedregosa MC, Villalba JM, Córdoba F, González JA (2005) Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L. J Exp Bot 56:685–694

    Article  Google Scholar 

  • Darkó É, Ambrus H, Stefanovits-Bányai É, Fodor J, Bakos F, Barnabás B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  Google Scholar 

  • Devi SR, Yamamoto Y, Matsumoto H (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. J Inorg Biochem 97(1):59–68

    Article  PubMed  CAS  Google Scholar 

  • Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S (2005) Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. J Plant Physiol 162:529–536

    Article  PubMed  CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997) Differential localization of antioxidants in maize leaves. Plant Physiol 114:1031–1037

    PubMed  CAS  Google Scholar 

  • Ezaki B, TsugUa S, Matsumoto H (1996) Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress. Physiol Plant 96:21–28

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed  CAS  Google Scholar 

  • Gavnholt B, Larsen K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiol Plant 116:273–280

    Article  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141

    Article  CAS  Google Scholar 

  • Giannakoula A, Moustakas M, Syros T, Yupsanis T (2010) Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67:487–494

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R, Nuckles E, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hossain MA, Zakir Hossain A, Kihara T, Koyama H, Hara T (2005) Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings. Soil Sci Plant Nutr 51:223–230

    Article  CAS  Google Scholar 

  • Inostroza-Blancheteau C, Reyes-Díaz M, Aquea F, Nunes-Nesi A, Alberdi M, Arce-Johnson P (2011) Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.). Plant Physiol Bioch 49:1005–1012

    Article  CAS  Google Scholar 

  • Jan F, Yamashita K, Matsumoto H, Maeda M (2001) Protein and peroxidase changes in various root-cell fractions of two upland rice cultivars differing in Al tolerance. Environ Exp Bot 46:141–146

    Article  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1982) Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot 12:345–354

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol 46:237–260

    Article  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N (2003) Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res 116:175–182

    Article  PubMed  CAS  Google Scholar 

  • Lin CC, Kao CH (1999) NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant Soil 216:147–153

    Article  CAS  Google Scholar 

  • Liu Q, Yang J, He L, Li Y, Zheng S (2008) Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol Plantarum 52:87–92

    Article  CAS  Google Scholar 

  • Ma JF, Shen R, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589

    Article  PubMed  CAS  Google Scholar 

  • Ma BH, Wan JM, Shen ZG (2007) H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul 52:91–100

    Article  CAS  Google Scholar 

  • Mao CZ, Yi KK, Yang L, Zheng BS, Wu YR, Liu FY, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Pereira LB, Mazzanti CMdA, Cargnelutti D, Rossato LV, Gonçalves JF, Calgaroto N (2011) Differential responses of oat genotypes: oxidative stress provoked by aluminum. Biometals 24:73–83

    Article  PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Dubey R (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Syros TS, Yupsanis T, Zafiriadis H, Economou A (2004) Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J Plant Physiol 161:69–77

    Article  PubMed  CAS  Google Scholar 

  • Tabaldi LA, Cargnelutti D, Gon alves JF, Pereira LB, Castro GY, Maldaner J, Rauber R, Rossato LV, Bisognin DA, Schetinger MRC (2009) Oxidative stress is an early symptom triggered by aluminum in Al-sensitive potato plantlets. Chemosphere 76:1402–1409

    Article  PubMed  CAS  Google Scholar 

  • Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K (2008) Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant Soil 307:167–178

    Article  CAS  Google Scholar 

  • Tamás L, Šimonovičová M, Huttová J, Mistrík I (2004) Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot 51:281–288

    Article  Google Scholar 

  • Wang JW, Kao C (2007) Protective effect of ascorbic acid and glutathione on AlCl3-inhibited growth of rice roots. Biol Plantarum 51:493–500

    Article  CAS  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M, Van Camp W (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38(12):1333–1339

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by the Fundamental Research Funds for the Central Universities (KYZ200905), the National Natural Science Foundation of China (No. 30228023, 31172021) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Cui or Zhenguo Shen.

Additional information

Communicated by E. Guiderdoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Gao, L., Zhang, H. et al. Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31, 687–696 (2012). https://doi.org/10.1007/s00299-011-1187-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1187-7

Keywords

Navigation