Skip to main content
Log in

H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effect of Al stress on H2O2 production of rice (Oryza sativa L.) seedlings and difference in responses of antioxidant enzymes between Al-tolerant variety (Azucena) and Al-sensitive rice one (IR 64) were investigated. Aluminum-induced H2O2 production and malondialdehyde (MDA) content were more pronounced for IR 64 than for Azucena. In the presence of 2 mM Al, addition of 10 mM imidazole (inhibitor of NADPH oxidase) and 1 mM azide (inhibitor of peroxidase) significantly decreased H2O2 production by 16% and 43% for Azucena, and 21% and 68% for IR 64, respectively. Under Al treatment, the Al-tolerant variety Azucena had significantly higher activities of catalase, ascorbate peroxidase, dehydroascorbate reducase, glutathione peroxidase and glutathione reductase, and higher concentrations of reduced glutathione than the Al-sensitive one IR 64. Treatment with buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly increased H2O2 production in both varieties in the presence and absence of Al. In contrast, the treatment with GSH significantly decreased the production of H2O2 induced by Al stress. Results suggest that GSH may play an important role in scavenging H2O2 caused by Al stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Al:

Aluminum

APX:

Ascorbate peroxidase

BSO:

Buthionine sulfoximine

CAT:

Catalase

DHAR:

Dehydroascorbate reducase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Darkó É, Ambrus H, Stefanovits-Bányai É, Fodor J, Bakos F, Barnabás B (2004) Aluminum toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  CAS  Google Scholar 

  • De Gara L, de Pinto MC, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxide activity during the early stage of wheat germination. Physiol Plant 100:894–900

    Article  Google Scholar 

  • Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S (2005) Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminum stress. J Plant Physiol 162:529–536

    Article  PubMed  CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997) Differerntial localization of antioxidants in maize leaves. Plant Physiol 114:1031–1037

    PubMed  CAS  Google Scholar 

  • Ezaki B, Tsugita S, Matsumoto H (1996) Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress. Physiol Plant 96:21–28

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. І. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Brunner M, Rüegsegger A, Stamp P, Brunold C (1996) Glutathione synthesis in maize genotypes with different sensitivity to chilling. Planta 198:365–370

    Article  CAS  Google Scholar 

  • Kocsy G, Szalai G, Vágújfalvi A, Stéhli L, Orosz G, Galiba G (2000) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295–301

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, von Ballmoos P, Rüegsegger A, Szalai G, Galiba G, Brunold C (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Grill D (1993) Content of low-molecular weight thiols during the imbibition of pea seeds. Physiol Plant 88:557–562

    Article  CAS  Google Scholar 

  • Kranner I, Birtić S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radical Biol Med 40:2155–2165

    Article  CAS  Google Scholar 

  • Lawrence RA, Burke RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Ma JF, Shen RF, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Vernoux1 T, Leaver C, Montagu MV, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    Article  PubMed  CAS  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Tamás L, Šimonovičová M, Huttová J, Mistrík I (2004) Aluminum stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot 51:281–288

    Article  CAS  Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38:1333–1339

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by the National Natural Science Foundation of China (No. 30228023) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Wan, J. & Shen, Z. H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul 52, 91–100 (2007). https://doi.org/10.1007/s10725-007-9183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-007-9183-1

Keywords

Navigation