Skip to main content
Log in

Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Hexaploid wheat (Triticum aestivum L., genomes AABBDD) originated in South Caucasus by allopolyploidization of the cultivated Emmer wheat T. dicoccum (genomes AABB) with the Caucasian Ae. tauschii ssp strangulata (genomes DD). Genetic variation of Ae. tauschii is an important natural resource, that is why it is of particular importance to investigate how this variation was formed during Ae. tauschii evolutionary history and how it is presented through the species area. The D genome is also found in tetraploid Ae. cylindrica Host (2n = 28, CCDD). The plasmon diversity that exists in Triticum and Aegilops species is of great significance for understanding the evolution of these genera. In the present investigation the complete nucleotide sequence of plasmon D (chloroplast DNA) of nine accessions of Ae. tauschii and two accessions of Ae. cylindrica are presented. Twenty-eight SNPs are characteristic for both TauL1 and TauL2 accessions of Ae. tauschii using TauL3 as a reference. Four SNPs are additionally observed for TauL2 lineage. The longest (27 bp) indel is located in the intergenic spacer Rps15-ndhF of SSC. This indel can be used for simple determination of TauL3 lineage among Ae. tauschii accessions. In the case of Ae. cylindrica additionally 7 SNPs were observed. The phylogeny tree shows that chloroplast DNA of TauL1 and TauL2 diverged from the TauL3 lineage. TauL1 lineage is relatively older then TauL2. The position of Ae. cylindrica accessions on Ae. tauschii phylogeny tree constructed on chloroplast DNA variation data is intermediate between TauL1 and TauL2. The complete nucleotide sequence of chloroplast DNA of Ae. tauschii and Ae. cylindrica allows to refine the origin and evolution of D plasmon of genus Aegilops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Beridze T, Pipia I, Beck J, Hsu SC, Gamkrelidze M, Gogniashvili M, Tabidze V, This P, Bacilieri R, Gotsiridze V, Glonti M, Schaal B (2011) Plastid DNA sequence diversity in a worldwide set of grapevine cultivars (Vitis vinifera L. subsp. vinifera). Bull Georgian National Acad Sc 5:98–103

    CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploidy wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudnikov AJ (1998) Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80:248–258

    Article  Google Scholar 

  • Dudnikov AJ (2000) Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet Resour Crop Evol 47:185–190

    Article  Google Scholar 

  • Dudnikov AJ (2012) Chloroplast DNA non-coding sequences variation in Aegilops tauschii Coss.: evolutionary history of the species. Genet Resour Crop Evol 59:683–699

    Article  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Eig A (1929) Monographisch-kritische Ubersicht der Gattung Aegilops. Repert Spec Nov Regni Veg Beih 55:1–228

    Google Scholar 

  • George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61:665–677. doi:10.1007/s00294-015-0495-9

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Friebe B (2002) Cytogenetics, phylogeny and evolution of cultivated wheats (2002). In: Curtis BC, Rajaram S, Macpherson HG (eds) Bread wheat; FAO plant production and protection series (FAO), vol 30. FAO, Rome, pp 71–88

    Google Scholar 

  • Gogniashvili M, Naskidashvili P, Bedoshvili D, Kotorashvili A, Kotaria N, Beridze T (2015) Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.). Genet Resour Crop Evol 62:1269–1277. doi:10.1007/s10722-015-0230-x

    Article  CAS  Google Scholar 

  • Gornicki P, Zhu H, Wang J, Challa GS, Zhang Z, Gill BS, Li W (2014) The chloroplast view of the evolution of polyploid wheat. New Phytol 204:704–714

    Article  CAS  PubMed  Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase enzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Pl Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Jinjikhadze T, Maisaia I, Shanshiashvili T, Togonidze N (2010) Distribution of Aegilops L.—wheat ancestor species in Georgia, Rustaveli Foundation Report. Grant 1-8/43 (in Georgian)

  • Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (Japanese). Agriculture and Horticulture (Tokyo) 19: 13–14 cylindrica, and their molecular organization. Ann Bot 116:189–200

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat, an introduction. Columbia (MO): College of Agriculture. University of Missouri Special Report. 353:1–146

  • Kong W, Yang J (2015) The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr Genet. doi:10.1007/s00294-015-0507-9

    PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Shi Y, Zhu Y, Chen H, Zhang J, Lin X, Guan X (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom 13:715

    Article  Google Scholar 

  • Maan SS (1976) Cytoplasmic homology between Aegilops squarrosa L., and A. cylindrica Host. Crop Sci 16:757–761

    Article  Google Scholar 

  • Matsuoka Y, Mori N, Kawahara T (2005) Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor Appl Genet 111:265–271

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2007) Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor Appl Genet 115:509–518

    Article  PubMed  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2008) Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS One 3:e3138

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Nishioka E, Kawahara T, Takumi S (2009) Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Syst Evol 279:233–244

    Article  Google Scholar 

  • Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T (2013) Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS One 8:e68310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Takumi SH, Kawahara T (2015) Intraspecific lineage divergence and its association with reproductive trait changeduring species range expansion in central Eurasianwild wheat Aegilops tauschii Coss. (Poaceae). BMC Evol Biol 15:213. doi:10.1186/s12862-015-0496-9

    Article  PubMed  PubMed Central  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free threshing hexaploid relatives. J Hered 37:81–89

    PubMed  Google Scholar 

  • Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, Kilian B (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS One 9:e85761

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S (2010) Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol Ecol 19:999–1013

    Article  PubMed  Google Scholar 

  • Nakai Y (1981) D genome doners for Aegilops cylindrica (CCDD) and Triticum aestivum (AABBDD) deduced from esterase isozyme analysis. Theor Appl Genet 60:11–16

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2015) The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet. doi:10.1007/s00294-015-0548-0

    PubMed  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Roder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

  • Tabidze V, Baramidze G, Pipia I, Gogniashvili M, Ujmajuridze L, Beridze T, Hernandez AG, Schaal B (2014) The complete chloroplast DNA sequence of eleven grape cultivars. Simultaneous resequencing methodology. J Int Sci Vigne Vin 48(2):99–109

    CAS  Google Scholar 

  • Tsunewaki K (1989) Plasmon diversity in Triticum and Aegilops and its implication in wheat evolution. Genome 31:143–154

    Article  Google Scholar 

  • Tsunewaki K, Wang GZ, Matsuoka Y (2002) Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype. Genes Genet Syst 77:409–427

    Article  CAS  PubMed  Google Scholar 

  • Vieira LN, Anjos KG, Faoro H, Fraga HPF, Greco TM, Pedrosa FO, Souza EM, Rogalski M, Souza RF, Guerra MP (2015) Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: bambusoideae) based on complete plastid genome sequences. Curr Genet. doi:10.1007/s00294-015-0549-z

    Google Scholar 

  • Wang J, Luo MCh, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92(11):1887–1898

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Knowledge Fund, a funding organization of the Free University of Tbilisi and Agricultural University of Georgia. The authors wish to acknowledge the constant interest and support of Mr. K. Bendukidze (deceased on 13th November, 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Gogniashvili.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogniashvili, M., Jinjikhadze, T., Maisaia, I. et al. Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution. Curr Genet 62, 791–798 (2016). https://doi.org/10.1007/s00294-016-0583-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0583-5

Keywords

Navigation