Skip to main content

Advertisement

Log in

Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR2–6(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR2–6. However, GC content strongly showed negative correlation with relative density (R 2 = 0.5, P < 0.05) and relative abundance (R 2 = 0.6, P < 0.05) of cSSRs. In summary, our comparative studies of chloroplast genomes illustrate the variable distribution of microsatellites and revealed that chloroplast genome of smaller plants possesses relatively more genomic diversity compared to higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arguello-Astorga GR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol 112:1151–1166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bevilacqua A, Fiorenza MT, Mangia F (2000) A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation. Development 127:1541–1551

    CAS  PubMed  Google Scholar 

  • Busturia A, Lloyd A, Bejarano F, Zavortink M, Xin H, Sakonju S (2001) The MCP silencer of the Drosophila Abd-B gene requires both pleiohomeotic and GAGA factor for the maintenance of repression. Development 128:2163–2173

    CAS  PubMed  Google Scholar 

  • Ceplitis A, Su Y, Lascoux M (2005) Bayesian inference of evolutionary history from chloroplast microsatellites in the cosmopolitan weed Capsella bursa-pastoris (Brassicaceae). Mol Ecol 14:4221–4233

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Tan Z, Jiang J, Li M, Chen H, Shen G, Yu R (2009) Similar distribution of simple sequence repeats in diverse completed human immunodeficiency virus type 1 genomes. FEBS Lett 583:2959–2963

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Tan Z, Zeng G, Zhuotong Z (2012) Differential distribution of compound microsatellites in various human immunodeficiency virus type 1 complete genomes. Infect Genet Evol 12:1452–1457

    Article  CAS  PubMed  Google Scholar 

  • De wachter R (1981) The number of repeats expected in random nucleic acid sequences and found in genes. J Theor Biol 91:71–98

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dybvig K, Voelker LL (1996) Molecular biology of mycoplasmas. Annu Rev Microbiol 50:25–57

    Article  CAS  PubMed  Google Scholar 

  • Ebert D, Peakall R (2009) A new set of universal de novo sequencing primers for extensive coverage of noncoding chloroplast DNA: new opportunities for phylogenetic studies and cpSSR discovery. Mol Ecol Resour 9:777–783

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • George B, Mashhood AC, Jain SK, Sharfuddin C, Chakraborty S (2012) Differential distribution and occurrence of simple sequence repeats in diverse geminivirus genomes. Virus Genes 45:556–566

    Article  CAS  PubMed  Google Scholar 

  • George B, Gnanasekaran P, Jain SK, Chakraborty S (2014) Genome wide survey and analysis of small repetitive sequences in caulimoviruses. Infect Genet Evol 27:15–24

    Article  CAS  PubMed  Google Scholar 

  • Gur-Arie R, Cohen CJ, Eitan Y (2000) Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res 10:62–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirao T, Watanabe A, Miyamoto N, Takata K (2009) Development and characterization of chloroplast microsatellite markers for Cryptomeria japonica D. Don. Mol Ecol Resour 9:122–124

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Säll T, Lind-Halldén C, Halldén C (2007) Evolution of chloroplast mononucleotide microsatellites in Arabidopsis thaliana. Theor Appl Genet 114:223–235

    Article  CAS  PubMed  Google Scholar 

  • Kofler R, Schlotterer C, Luschutzky E, Lelley T (2008) Survey of microsatellite clustering in eight fully sequenced species sheds light on the origin of compound microsatellites. BMC Genomics 9:612

    Article  PubMed Central  PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frame shift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mrazek J (2006) Analysis of distribution indicates diverse functions of simple sequence repeats in Mycoplasma genomes. Mol Biol Evol 23:1370–1385

    Article  CAS  PubMed  Google Scholar 

  • Mudunuri SB, Nagarajaram HA (2007) IMEx: imperfect microsatellite extractor. Bioinformatics 23:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Provan J, Corbett G, McNicol JW, Powell W (1997) Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. Genome 40:104–110

    Article  CAS  PubMed  Google Scholar 

  • Sangwan I, Brian MRO (2002) Identification of a soybean protein that interacts with GAGA element dinucleotide repeat DNA. Plant Physiol 129:1788–1794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 6(6):e21298. doi:10.1371/journal.pone.0021298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Belkum A (1999) The role of short sequence repeats in epidemiologic typing. Curr Opin Microbiol 2:306–311

    Article  PubMed  Google Scholar 

  • Van Belkum A, Scherer S, van Alphen L, Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293

    PubMed Central  PubMed  Google Scholar 

  • Wells R (1996) Molecular basis of genetic instability of triplet repeats. J Biol Chem 271:2875–2878

    Article  CAS  PubMed  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861

    Article  CAS  PubMed  Google Scholar 

  • Yeramian E, Buc H (1999) Tandem repeats in complete bacterial genome sequences: sequence and structural analyses for comparative studies. Res Microbiol 150:745–754

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Korpelainen H, Li C (2006) Microsatellite variation of Quercus aquifolioides populations at varying altitudes in the Wolong natural reserve of China. Silva Fenn 40:407–415

    Google Scholar 

Download references

Acknowledgments

We acknowledge Blessy software solution and The Science & Engineering Research Board, DST, Government of India for funding support. Authors are thankful to Dr. Girish K Srivastava, Actual: Prof. Colaborador Honorífico, IOBA, University of Valladolid, Spain and Dr. Umesh C.S. Yadav, SLS, CUG for language editing.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biju George or Achuit K. Singh.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, B., Bhatt, B.S., Awasthi, M. et al. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61, 665–677 (2015). https://doi.org/10.1007/s00294-015-0495-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0495-9

Keywords

Navigation