Skip to main content
Log in

The structure and composition of olivine grain boundaries: 40 years of studies, status and current developments

  • Review Article
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Interfaces in rocks, especially grain boundaries in olivine dominated rocks, have been subject to about 40 years of studies. The grain boundary structure to property relation is fundamental to understand the diverging properties of polycrystalline samples compared to those of single crystals. The number of direct structural observations is small, i.e. in range of 100 micrographs, and the number of measurements of properties directly linked to structural observations is even smaller. Bulk aggregate properties, such as seismic attenuation, rheology and electrical conductivity, are sensitive to grain size, and seem to show influences by grain boundary character distributions. In this context we review previous studies on grain boundary structure and composition and plausible relations to bulk properties. The grain boundary geometry is described using five independent parameters; generally, their structural width ranges between 0.4–1.2 nm and the commonly used 1 nm seems a good approximation. This region of enhanced disorder is often enriched in elements that are incompatible in the perfect crystal lattice. The chemical composition of grain boundaries depends on the bulk rock composition. We determined the 5 parameter grain boundary character distribution (GBCD) for polycrystaline Fo\(_{90}\) and studied structure and chemistry at the nm-scale to extend previous measurements. We find that grain boundary planes close to perpendicular to the crystallographic c-direction dominate the grain boundary network. We conclude that linking grain boundary structure in its full geometric parameter space to variations of bulk rock properties is now possible by GBCD determination using EBSD mapping and statistical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adams BL, Ta’asan S, Kinderlehrer D, Livshits I, Mason DE, Wu C-T, Mullins WW, Rohrer GS, Rollett AD, Saylor DM (1999) Extracting grain boundary and surface energy from measurement of triple junction geometry. Interface Sci 7:321–338

  • Adams BL, Wright SI, Kunze K (1993) Orientation imaging: the emergence of a new microscopy. Metall Trans A 24(4):819–831

    Article  Google Scholar 

  • Adjaoud O, Marquardt K, Jahn S (2012) Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys Chem Miner 39(9):749–760. https://doi.org/10.1007/s00269-012-0529-5

    Article  Google Scholar 

  • Alsayed AM, Islam JF, Zhang J, Collings PJ, Yodh A (2005) Premelting at defects within bulk colloidal crystals. Science 309(August):1207–1210

    Article  Google Scholar 

  • Anderson DL, Sammis C (1970) Partial melting in the upper mantle. Phys Earth Planet Inter 3:41–50

    Article  Google Scholar 

  • Armstrong J (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Ashby M (1972) Boundary defects, and atomistic aspects of boundary sliding and diffusional creep. Surf Sci 31:498–542

    Article  Google Scholar 

  • Ashby MF, Raj R, Gifkins RC (1970) Diffusion-controlled sliding at a serraed grain boundary. Scripta Metall 4:737–742

    Article  Google Scholar 

  • Avramov I (2009) Relationship between diffusion, self-diffusion and viscosity. J Non-Cryst Solids 355(10–12):745–747

    Article  Google Scholar 

  • Bagdassarov N, Laporte D, Thompson AB (2000) Physics and chemistry of partially molten rocks. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Bean JJ, McKenna KP (2016) Origin of differences in the excess volume of copper and nickel grain boundaries. Acta Mater 110:246–257

    Article  Google Scholar 

  • Beeman ML, Kohlstedt DL (1993) Deformation of fine-grained aggregates of olivine plus melt at high temperatures and pressures. J Geophys Res 98(B4):6443–6452

    Article  Google Scholar 

  • Bhogireddy VSPK, Hüter C, Neugebauer J, Steinbach I, Karma A, Spatschek R (2014) Phase-field modeling of grain-boundary premelting using obstacle potentials. Phys Rev E—Statist Nonlinear Soft Matter Phys 90(1):1–10. https://doi.org/10.1016/j.commatsci.2015.02.040

    Article  Google Scholar 

  • Bindi L, Yao N, Lin C, Hollister LS, Andronicos CL, Distler VV, Eddy MP, Kostin A, Kryachko V, MacPherson GJ, Steinhardt WM, Yudovskaya M, Steinhardt PJ (2015) Natural quasicrystal with decagonal symmetry. Sci Rep 5:9111

    Article  Google Scholar 

  • Bojarski SA (2014) The effects of grain boundary character and energy on complexion transitions in ceramics. Thesis, Carnegie Mellon University, Pittsburgh

  • Boneh Y, Wallis D, Hansen LN, Krawczynski MJ, Skemer P (2017) Oriented grain growth and modification of frozen anisotropy’ in the lithospheric mantle. Earth Planet Sci Lett 474:368–374

    Article  Google Scholar 

  • Brown GE (1980) Orthosilicates. In: Ribbe PH (ed) Reviews in mineralogy, vol 5, chapter 11. Olivine, pp 275–365

  • Bruno M, Massaro FR, Prencipe M, Demichelis R, De La Pierre M, Nestola F (2014) Ab initio calculations of the main crystal surfaces of Forsterite (Mg2SiO4): a preliminary study to understand the nature of geochemical processes at the olivine interface. J Phys Chem C 118:2498–2506. https://doi.org/10.1021/jp409837d

    Article  Google Scholar 

  • Bruno M, Rubbo M, Aquilano D, Massaro FR, Nestola F (2016) Diamond and its olivine inclusions: a strange relation revealed by ab initio simulations. Earth Planet Sci Lett 435:31–35. https://doi.org/10.1016/j.epsl.2015.12.011

    Article  Google Scholar 

  • Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamical constraints on fluid distribution in partial melts. J Geophys Res 84:6102–6108. https://doi.org/10.1029/JB084iB11p06109

    Article  Google Scholar 

  • Burke J, Turnbull D (1952) Recrystallization and grain growth. Prog Metal Phys 3:220–292. https://doi.org/10.1016/0502-8205(52)90009-9

    Article  Google Scholar 

  • Burnard PG, Demouchy S, Delon R, Arnaud NO, Marrocchi Y, Cordier P, Addad A (2015) The role of grain boundaries in the storage and transport of noble gases in the mantle. Earth Planet Sci Lett 430:260–270. https://doi.org/10.1016/j.epsl.2015.08.024

    Article  Google Scholar 

  • Cabane H, Laporte D, Provost A (2005) An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contrib Mineral Petrol 150(1):37–53. https://doi.org/10.1007/s00410-005-0002-2

    Article  Google Scholar 

  • Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54(19):4953–4975

    Article  Google Scholar 

  • Casey WH, Westrich HR, Banfield JF, Ferruzzi G, Arnold GW (1993) Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature 366(6452):253–256

    Article  Google Scholar 

  • Chaim R (1997) Percolative composite model for prediction of the properties of nanocrystalline materials. J Mater Res 12(07):1828–1836

    Article  Google Scholar 

  • Chakraborty S (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980°–1300°C. J Geophys Res Solid Earth 102(B6):12317–12331. https://doi.org/10.1029/97JB00208

    Article  Google Scholar 

  • Chakraborty S, Farver JR, Yund RA, Rubie DC, Miherais I, Chakrahorty S (1994) Mg tracer diffusion in synthetic forsterite and San Carlos Olivine as a function of P, T and fO2. Phys Chem Miner 21(8):489–500. https://doi.org/10.1007/BF00203923

    Article  Google Scholar 

  • Chan SW, Balluffi RW (1986) Study of energy vs misorientation for grain boundaries in gold by crystallite rotation method-II. Tilt boundaries and mixed boundaries. Acta Metall 34(11):2191–2199. https://doi.org/10.1016/0001-6160(86)90164-1

    Article  Google Scholar 

  • Ching WY, Xu Y-N (1999) Nonscalability and nontransferability in the electronic properties of the Y-Al-O system. Phys Rev B 59(20):12815

    Article  Google Scholar 

  • Cho J, Wang CM, Chan HM, Rickman JM, Harmer MP (1999) Role of segregating dopants on the improved creep resistance of aluminum oxide. Acta Mater 47(15–16):4197–4207

    Article  Google Scholar 

  • Cinibulk MK, Kleebe H-J, Ruhle M (1993) Quantitative comparison of TEM techniques for determining amorphous intergranular film thickness. J Am Ceram Soc 76(2):426–432

    Article  Google Scholar 

  • Clarke DR (1979a) High-resolution techniques and application to nonoxide ceramics. J Am Ceram Soc 62(5–6):236–246. https://doi.org/10.1111/j.1151-2916.1979.tb09477.x

    Article  Google Scholar 

  • Clarke DR (1979b) On the detection of thin intergranular films by electron microscopy. Ultramicroscopy 4(1):33–44

    Article  Google Scholar 

  • Clarke DR (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials. J Am Ceram Soc 70(1):15–22. https://doi.org/10.1111/j.1151-2916.1987.tb04846.x

    Article  Google Scholar 

  • Cmíral M, Fitz Gerald JD, Faul UH, Green DH (1998) A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contrib Miner Petrol 130(3–4):336–345

    Google Scholar 

  • Cooper R, Kohlstedt D (1982) Interfacial energies in the olivine basalt system. In: Akimoto S, Manghnani M (eds) High-pressure research in geophysics. Reidel with Center for Academic Publications Japan; AEPS 12, pp 217–228

  • Cooper RF, Kohlstedt DL (1984) Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophysics 107(3–4):207–233. https://doi.org/10.1016/0040-1951(84)90252-X

    Article  Google Scholar 

  • Cordier P, Demouchy S, Beausir B, Taupin V, Barou F, Fressengeas C (2014) Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507:51–56

    Article  Google Scholar 

  • Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Zeitschrift für physikalische Chemie 92:219–221

    Google Scholar 

  • Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113(B12):B12211

    Article  Google Scholar 

  • Dash JG (1999) RMP colloquia history of the search for continuous melting. Rev Modern Phys 71(5):1737–1743

    Article  Google Scholar 

  • Davies GR, Stolz AJ, Mahotkin IL, Nowell GM, Pearson DG (2006) Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites. J Petrol 47(6):1119–1146

    Article  Google Scholar 

  • De Hoog JC, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270(1–4):196–215

    Article  Google Scholar 

  • de Kloe R (2001) Deformation mechanisms and melt nano-structures in experimentally deformed olivine-orthopyroxene rocks with low melt fractions. Thesis 201:176

    Google Scholar 

  • De Kloe R, Drury MR, van Roermund HLM (2000) Evidence for stable grain boundary melt films in experimentally deformed olivine-orthopyroxene rocks. Phys Chem Miner 27:480–494

    Article  Google Scholar 

  • de Leeuw NH, Catlow CR, King HE, Putnis A, Muralidharan K, Deymier P, Stimpfl M, Drake MJ (2010) Where on Earth has our water come from? Chem Commun (Cambridge, England) 46(47):8923–8925

    Article  Google Scholar 

  • de Leeuw NH, Parker SC, Catlow CR, Price GD (2000a) Modelling the effect of water on the surface structure and stability of forsterite. Phys Chem Miner 27(5):332–341

    Article  Google Scholar 

  • de Leeuw NH, Parker SC, Catlow CRA, Price GD (2000b) Proton-containing defects at forsterite 010 tilt grain boundaries and stepped surfaces. Am Miner 85(9):1143–1154

    Article  Google Scholar 

  • Demouchy S (2010) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295(1–2):305–313

    Article  Google Scholar 

  • Dillon SJ, Harmer MP (2007) Multiple grain boundary transitions in ceramics: a case study of alumina. Acta Mater 55(15):5247–5254

    Article  Google Scholar 

  • Dillon SJ, Harmer MP, Rohrer GS (2010) The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions. J Am Ceram Soc 1802:1796–1802

    Google Scholar 

  • Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. Rev Miner Geochem 72(1):921–970

    Article  Google Scholar 

  • Doukhan N, Doukhan JC, Ingrin J, Jaoul O, Raterron P (1993) Early partial melting in pyroxenes. Am Miner 78(11–12):1246–1256

    Google Scholar 

  • Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30N). Chem Geol 264(1–4):71–88

    Article  Google Scholar 

  • Drury MR (2005) Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere. Geol Soc London Spec Publ 243(2):143–158

    Article  Google Scholar 

  • Drury MR, Fitz Gerald JD (1996) Grain boundary melt films in an experimentally deformed olivine-orthopyroxene rock: Implications for melt distribution in upper mantle rocks. Geophys Res Lett 23(7):701–704

    Article  Google Scholar 

  • Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172:235–253

  • Durham WB, Goetze C (1977) Plastic flow of oriented single crystals of olivine: 1. Mechanical data. J Geophys Res 82(36):5737–5753

    Article  Google Scholar 

  • Durham WB, Goetze C, Blake B (1977) Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures. J Geophys Res 82(36):5755–5770

    Article  Google Scholar 

  • Duyster J, Stöckhert B (2001) Grain boundary energies in olivine derived from natural microstructures. Contrib Miner Petrol 140(5):567–576

    Article  Google Scholar 

  • Edgar AD (1973) Experimental petrology. Clarendon Press, Oxford

    Google Scholar 

  • Eggins S, Rudnick R, McDonough W (1998) The composition of peridotites and their minerals: a laser-ablation ICPMS study. Earth Planet Sci Lett 154(1–4):53–71

    Article  Google Scholar 

  • Fang X, Yin W, Qin C, Wang W, Lo K, Shek C (2016) The interface character distribution of cold-rolled and annealed duplex stainless steel. Mater Charact 118:397–404

    Article  Google Scholar 

  • Farla RJM, Peach CJ, ten Grotenhuis SM (2010) Electrical conductivity of synthetic iron-bearing olivine. Phys Chem Miner 37(3):167–178

    Article  Google Scholar 

  • Farver JR, Yund A (2000) Silicon diffusion in forsterite aggregates: Implications for diffusion accommodated creep. Geophys Res Lett 27(15):2337–2340

    Article  Google Scholar 

  • Farver JR, Yund RA, Rubie DC (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa. J Geophys Res Solid Earth 99(B10):19809–19819. https://doi.org/10.1029/94JB01250

    Article  Google Scholar 

  • Faul UH (2000) Chapter 3 constraints on the melt distribution in anisotropic polycrystalline aggregates undergoing grain growth. In: Bagdassarov N, Laporte D, Thompson A (eds) Physics and chemistry of partially molten rocks, vol 3. Kluwer Academic Publishers, Dordrecht, pp 67–92

    Chapter  Google Scholar 

  • Faul UH, Fitz Gerald JD (1999) Grain misorientations in partially molten olivine aggregates: an electron backscatter diffraction study. Phys Chem Miner 26(3):187–197

    Article  Google Scholar 

  • Faul U, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134. https://doi.org/10.1016/j.epsl.2005.02.008

  • Faul UH, Jackson I (2007) Diffusion creep of dry, melt-free olivine. J Geophys Res 112(B4):B04204

    Article  Google Scholar 

  • Faul UH, Jackson I (2015) Transient creep and strain energy dissipation: an experimental perspective. Annu Rev Earth Planet Sci 43(1):541–569. https://doi.org/10.1146/annurev-earth-060313-054732

    Article  Google Scholar 

  • Faul UH, Scott D (2006) Grain growth in partially molten olivine aggregates. Contrib Miner Petrol 151(1):101–111

    Article  Google Scholar 

  • Faul UH, Toomey DR, Waff HS (1994) Intergranular balsaltic melt is dristibuted in thin, eleogated inclusions. Geophys Res Lett 21(1):29–32

    Article  Google Scholar 

  • Faul UH, Fitz Gerald JD, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109(B6):B06202

    Article  Google Scholar 

  • Faul UH, Cline CJ, David EC, Berry AJ, Jackson I (2016) Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet Sci Lett 452:227–237

    Article  Google Scholar 

  • Fei H, Koizumi S, Sakamoto N, Hashiguchi M, Yurimoto H, Marquardt K, Miyajima N, Yamazaki D, Katsura T (2016) New constraints on upper mantle creep mechanism inferred from silicon grain-boundary diffusion rates. Earth Planet Sci Lett 433(433):350–359

    Article  Google Scholar 

  • Fliervoet TF, Drury MR, Chopra PN (1999) Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonophysics 303(1–4):1–27

    Article  Google Scholar 

  • Foley SF, Jacob DE, O’Neill HSC (2011) Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contrib Miner Petrol 162(1):1–20

    Article  Google Scholar 

  • Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191

    Article  Google Scholar 

  • Fultz BJH (2001) Transmission electron microscopy and diffractometry of materials. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Garapic G, Faul UH, Brisson E (2013) High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem Geophys Geosyst 14:1–11

    Article  Google Scholar 

  • Gardés E, Wunder B, Marquardt K, Heinrich W (2012) The effect of water on intergranular mass transport: new insights from diffusion-controlled reaction rims in the MgOSiO2 system. Contrib Miner Petrol 164(1):1–16. https://doi.org/10.1007/s00410-012-0721-0

    Article  Google Scholar 

  • Garrido CJ, Bodinier J-L, Alard O (2000) Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite. Earth Planet Sci Lett 181(3):341–358

    Article  Google Scholar 

  • Ghanbarzadeh S, Prodanović M, Hesse M (2014) Percolation and grain boundary wetting in anisotropic texturally equilibrated pore networks. Phys Rev Lett 113(4):048001

    Article  Google Scholar 

  • Ghosh DB, Karki BB (2014) First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite. Phys Chem Miner 41:163–171. https://doi.org/10.1007/s00269-013-0633-1

    Article  Google Scholar 

  • Goetze C, Kohlstedt DL (1973) Laboratory study of dislocation climb and diffusion in olivine. J Geophys Res 78(26):5961–5971. https://doi.org/10.1029/JB078i026p05961

    Article  Google Scholar 

  • Gribb TT, Cooper RF (1998) Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. J Geophys Res Solid Earth 103(B11):27267–27279

    Article  Google Scholar 

  • Gurmani SF, Jahn S, Brasse H, Schilling FR (2011) Atomic scale view on partially molten rocks: Molecular dynamics simulations of melt-wetted olivine grain boundaries. J Geophys Res 116(B12):B12209

    Article  Google Scholar 

  • Han L-B, An Q, Fu R-S, Zheng L, Luo S-N (2010) Local and bulk melting of Cu at grain boundaries. Phys Rev B 405:748–753

    Google Scholar 

  • Hansen LN, Zimmerman ME, Kohlstedt DL (2011) Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation. J Geophys Res 116(B8):B08201

    Article  Google Scholar 

  • Hansen L, Zimmerman M, Dillman A, Kohlstedt D (2012a) Strain localization in olivine aggregates at high temperature: A laboratory comparison of constant-strain-rate and constant-stress boundary conditions. Earth Planet Sci Lett 333–334:134–145

    Article  Google Scholar 

  • Hansen L, Zimmerman M, Kohlstedt D (2012b) Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature 492(7429):415–418

    Article  Google Scholar 

  • Hansen LN, Zimmerman ME, Kohlstedt DL (2012c) The influence of microstructure on deformation of olivine in the grain-boundary sliding regime. J Geophys Res Solid Earth 117(B9). https://doi.org/10.1029/2012JB009305

  • Harmer MP (2010) Interfacial kinetic engineering: how far have we come since Kingery’s inaugural sosman address? J Am Ceram Soc 93(2):301–317

    Article  Google Scholar 

  • Hartmann K, Wirth R, Heinrich W (2010) Synthetic near \(\Sigma\)5 (210)/[100] grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Miner 37(5):291–300. https://doi.org/10.1007/s00269-009-0333-z

    Article  Google Scholar 

  • Hartmann K, Wirth R, Markl G (2008) P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten Norway. Contrib Mineral Petrol 156(3):359–375. https://doi.org/10.1007/s00410-008-0290-4

    Article  Google Scholar 

  • Hashim L (2016) Unraveling the grain size evolution in the Earth ’ s mantle Experimental observations and theoretical modeling. PhD thesis

  • Hayden LA, Watson EB (2008) Grain boundary mobility of carbon in Earth’s mantle: a possible carbon flux from the core. Proc Nat Acad Sci USA 105(25):8537–41

    Article  Google Scholar 

  • Heilbronner R, Tullis J (2006) Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite. J Geophys Res Solid Earth 111:1–19

    Article  Google Scholar 

  • Heinemann S, Wirth R, Dresen G (2001) Synthesis of feldspar bicrystals by direct bonding. Phys Chem Miner 28(10):685–692

    Article  Google Scholar 

  • Heinemann S, Wirth R, Dresen G, Paper O (2003) TEM study of a special grain boundary in a synthetic K-feldspar bicrystal: Manebach twin. Phys Chem Miner 30(3):125–130

    Article  Google Scholar 

  • Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5. Phys Chem Miner 32(4):229–240

    Article  Google Scholar 

  • Hiraga T, Anderson I, Zimmerman M, Mei S, Kohlstedt D (2002) Structure and chemistry of grain boundaries in deformed, olivine + basalt and partially molten lherzolite aggregates: evidence of melt-free grain boundaries. Contrib Miner Petrol 144:163–175

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427(6976):699–703

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL, Iraga TAH, Nderson IANMA, Ohlstedt DALK (2003) Chemistry of grain boundaries in mantle rocks. Am Miner 88(6976):1015–1019

    Article  Google Scholar 

  • Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system II: Applications of interface enrichment to mantle geochemistry. Geochim Cosmochim Acta 71(5):1281–1289

    Article  Google Scholar 

  • Hiraga T, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system I: Analytical techniques, thermodynamics, and segregation characteristics. Geochim Cosmochim Acta 71(5):1266–1280

    Article  Google Scholar 

  • Hiraga T, Tachibana C, Ohashi N, Sano S (2010) Grain growth systematics for forsterite enstatite aggregates: effect of lithology on grain size in the upper mantle. Earth Planet Sci Lett 291(1–4):10–20

    Article  Google Scholar 

  • Hirth G, Kohlstedt D (2003) Rheology of the Upper mantle and the mantle Wedge: a view from the experimentalists. In: Inside the Subduction Factory, p 311

  • Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime. J Geophys Res 100(B2):1981–2001

    Article  Google Scholar 

  • Holm EA, Rohrer GS, Foiles SM, Rollett AD, Miller HM, Olmsted DL (2011) Validating computed grain boundary energies in fcc metals using the grain boundary character distribution. Acta Mater 59(13):5250–5256

    Article  Google Scholar 

  • Holtzman BK, Kendall J-M (2010) Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem Geophys Geosyst 11. https://doi.org/10.1029/2010GC003296

  • Homer ER, Patala S, Priedeman JL (2015) Grain boundary plane orientation fundamental zones and structure-property relationships. Sci Rep 5:15476

    Article  Google Scholar 

  • Jackson I, Faul UH (2010) Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys Earth Planet Inter 183:151–163. https://doi.org/10.1016/j.pepi.2010.09.005

  • Jackson I, Faul UH, Fitz Gerald JD, Tan BH (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. J Geophys Res 109(B6):B06201

    Article  Google Scholar 

  • Jackson I, Fitz Gerald JD, Faul UH, Tan BH (2002) Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res Solid Earth 107(B12):ECV 5–1–ECV 5–16

    Article  Google Scholar 

  • Johnson CL, Hÿtch MJ, Buseck PR, Hy MJ (2004) Nanoscale waviness of low-angle grain boundaries. Proc Nat Acad Sci USA 101(52):17936–17939

    Article  Google Scholar 

  • Jurewicz SR, Jurewicz AJG (1986) Distribution of apparent angles on random sections with emphasis on dihedral angle measurements. J Geophys Res 91(B9):9277

    Article  Google Scholar 

  • Kahneman D, Tversky A (1981) On the study of statistical intuitions. ONR Tech Rep

  • Kaplan WD, Chatain D, Wynblatt P, Carter WC (2013) A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J Mater Sci 48(17):5681–5717

    Article  Google Scholar 

  • Karato S (1989) Grain growth kinetics in olivine aggregates. Tectonophysics 168(4):255–273

    Article  Google Scholar 

  • Karato S-I, Paterson MS, FitzGerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res 91(B8):8151

    Article  Google Scholar 

  • Karato S-I, Toriumi M, Fujii T (1980) Dynamic recrystallization of olivine single crystals during high-temperature creep. Geophys Res Lett 7(9):649–652

    Article  Google Scholar 

  • Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion, 3rd edn. Wiley & Sons, Chichester

    Google Scholar 

  • Kelly MN, Bojarski SA, Rohrer GS (2016) The temperature dependence of the relative grain-boundary energy of Yttria-doped alumina. J Am Ceram Soc 7:1–7

    Google Scholar 

  • Kim C-S, Rollett AD, Rohrer GS (2006) Grain boundary planes: New dimensions in the grain boundary character distribution. Scripta Mater 54(6):1005–1009

    Article  Google Scholar 

  • King HE, Plümper O, Geisler T, Putnis A (2011) Experimental investigations into the silicification of olivine: Implications for the reaction mechanism and acid neutralization. Am Miner 96(10):1503–1511

    Article  Google Scholar 

  • King HE, Stimpfl M, Deymier P, Drake MJ, Catlow CRA, Putnis A, de Leeuw NH (2010) Computer simulations of water interactions with low-coordinated forsterite surface sites: Implications for the origin of water in the inner solar system. Earth Planet Sci Lett 300(1–2):11–18

    Article  Google Scholar 

  • Kingery WD (1974) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I, grain-boundary characteristics, structure, and electrostatic potential. J Am Ceram Soc 57(1):1–8

    Article  Google Scholar 

  • Kiss ÁK, Rauch EF, Lábár JL (2016) Highlighting material structure with transmission electron diffraction correlation coefficient maps. Ultramicroscopy 163:31–37

    Article  Google Scholar 

  • Kleebe H-J (2002) Comparison between SEM and TEM imaging techniques to determine grain-boundary wetting in ceramic polycrystals. J Am Ceramic Soc 85(1):43–48. https://doi.org/10.1111/j.1151-2916.2002.tb00036.x)

    Article  Google Scholar 

  • Kliewer KL, Koehler JS (1965) Space charge in ionic crystals I. General approach with applictaion to NaCl. Phys Rev 140:A1226–A1240. https://doi.org/10.1103/PhysRev.140.A1226

  • Koch CT, Bhattacharyya S, Rühle M, Satet RL, Hoffmann MJ (2006) Measuring electrostatic potential profiles across amorphous intergranular films by electron diffraction. Microsc Microanal 12(02):160–169

    Article  Google Scholar 

  • Kohlstedt DL (1990) Chemical analysis of grain boundaries in an olivine-basalt aggregate using high-resolution, analytical electron microscopy. In: The Brittle-Ductile Transition in Rocks. American Geophysical Union, pp 211–218. https://doi.org/10.1029/GM056p0211

  • Kohlstedt DL, Hansen LN (2015) Properties of rocks and minerals–constitutive equations, rheological behavior, and viscosity of rocks, vol 2. Elsevier B.V, Amsterdam

    Google Scholar 

  • Koizumi S, Hiraga T, Tachibana C, Tasaka M, Miyazaki T, Kobayashi T, Takamasa A, Ohashi N, Sano S (2010) Synthesis of highly dense and fine-grained aggregates of mantle composites by vacuum sintering of nano-sized mineral powders. Phys Chem Miner 37(8):505–518

    Article  Google Scholar 

  • Langdon TG (2006) Grain boundary sliding revisited: Developments in sliding over four decades. J Mater Sci 41(3):597–609

    Article  Google Scholar 

  • Laporte D, Provost A (2000) Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: dry grain boundaries. J Geophys Res Solid Earth 105(B11):25937–25953

    Article  Google Scholar 

  • Laumonier M, Farla R, Frost DJ, Katsura T, Marquardt K, Bouvier A-S, Baumgartner LP (2017) Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle. Earth Planet Sci Lett 463:286–297

    Article  Google Scholar 

  • Lee C-TA, Harbert A, Leeman WP (2007) Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: an approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthopyroxene, clinopyroxene and basaltic melt. Geochim Cosmochim Acta 71(2):481–496

    Article  Google Scholar 

  • Lehovec K (1953) Space-charge layer and distribution of lattice defects at the surface of ionic crystals. J Chem Phys 21:1123–1128

    Article  Google Scholar 

  • Lejček P (ed) (2010) Grain boundaries: description, structure and thermodynamics. In: Grain boundary segregation in metals. Springer, Berlin, Heidelberg, pp 5–24. https://doi.org/10.1007/978-3-642-12505-8_2

  • Levine JS, Mosher S, Rahl JM (2016) The role of subgrain boundaries in partial melting. J Struct Geol 89:181–196

    Article  Google Scholar 

  • Lloyd GE, Farmer AB, Mainprice D (1997) Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279(1–4):55–78

    Article  Google Scholar 

  • Luo J (2012) Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. J Am Ceram Soc 95(8):2358–2371

    Article  Google Scholar 

  • Luo J, Chiang Y-M (2008) Wetting and prewetting on ceramic surfaces. Annu Rev Mater Res 38(1):227–249

    Article  Google Scholar 

  • Luo J, Gupta VK, Yoon DH, Meyer HM (2005) Segregation-induced grain boundary premelting in nickel-doped tungsten. Appl Phys Lett 87(23):1–3

    Article  Google Scholar 

  • Mackenzie JK (1958) Second paper on statistics associated with the random disorientation of cubes. Biometrika 45(1/2):229

    Article  Google Scholar 

  • Maher K, Johnson NC, Jackson A, Lammers LN, Torchinsky AB, Weaver KL, Bird DK, Brown GE (2016) A spatially resolved surface kinetic model for forsterite dissolution. Geochim Cosmochim Acta 174:313–334

    Article  Google Scholar 

  • Mantisi B, Sator N, Guillot B (2017) Structure and transport at grain boundaries in polycrystalline olivine: an atomic-scale perspective. Geochim Cosmochim Acta 219:160–176

    Article  Google Scholar 

  • Marquardt H, Marquardt K (2012) Focused ion beam preparation and characterization of single-crystal samples for high-pressure experiments in the diamond-anvil cell. Am Mineral 97:299–304. https://doi.org/10.2138/am.2012.3911

  • Marquardt H, Gleason A, Marquardt K, Speziale S, Miyagi L, Neusser G, Wenk H-R, Jeanloz R (2011a) Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering. Phys Rev B 84(6):064131. https://doi.org/10.1103/PhysRevB.84.064131

    Article  Google Scholar 

  • Marquardt H, Speziale S, Marquardt K, Reichmann HJ, Konôpková Z, Morgenroth W, Liermann HP (2011b) The effect of crystallite size and stress condition on the equation of state of nanocrystalline MgO. J Appl Phys 110(11):8–12. https://doi.org/10.1063/1.3662491

    Article  Google Scholar 

  • Marquardt K, Petrishcheva E, Gardés E, Wirth R, Abart R, Heinrich W, Garde E (2011c) Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1,723 K: a miniaturized study. Contrib Miner Petrol 162(4):739–749. https://doi.org/10.1007/s00410-011-0622-7

    Article  Google Scholar 

  • Marquardt K, Ramasse QM, Kisielowski C, Wirth R (2011d) Diffusion in yttrium aluminium garnet at the nanometer-scale: Insight into the effective grain boundary width. Am Miner 96(10):1521–1529. https://doi.org/10.2138/am.2011.3625

    Article  Google Scholar 

  • Marquardt K, Rohrer GS, Morales L, Rybacki E, Marquardt H, Lin B (2015) The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes. Contrib Miner Petrol 170(4):40. https://doi.org/10.1007/s00410-015-1193-9

    Article  Google Scholar 

  • Marquardt K, De Graef M, Singh S, Marquardt H, Rosenthal A, Koizuimi S (2017) Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: overcoming indexing difficulties on geological materials. Am Mineral 102:1843–1855. https://doi.org/10.2138/am-2017-6062

  • Maruyama G, Hiraga T (2017a) Grain-to multiple-grain-scale deformation processes during diffusion creep of forsterite + diopside aggregate: 2. Grain boundary sliding-induced grain rotation and its role in crystallographic preferred orientation in rocks. J Geophys Res Solid Earth. https://doi.org/10.1002/2017JB014255

  • Maruyama G, Hiraga T (2017b) Grain-to multiple-grain-scale deformation processes during diffusion creep of forsterite + diopside aggregate I: Direct observations. J Geophys Res Solid Earth. https://doi.org/10.1002/2017JB014255

  • McClay KR (1977) Pressure solution and Coble creep in rocks and minerals: a review. J Geol Soc 134(1):57–70

    Article  Google Scholar 

  • Mcdonnell RD, Spiers CJ (2002) Fabrication of dense forsterite enstatite polycrystals for experimental studies. Phys Chem Miner 29:19–31

    Article  Google Scholar 

  • Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262

    Article  Google Scholar 

  • Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res 105(B9):21471–21481

    Article  Google Scholar 

  • Mellenthin J, Karma A, Plapp M (2008) Phase-field crystal study of grain-boundary premelting. Phys Rev B 78(18):184110

    Article  Google Scholar 

  • Milas I, Hinnemann B, Carter EA (2008) Structure of and ion segregation to an alumina grain boundary: implications for growth and creep. J Mater Res 23(5):1494–1508

    Article  Google Scholar 

  • Miletich R, Nowak M, Seifert F, Angel RJ, Brandstätter G (1999) High-pressure crystal chemistry of chromous orthosilicate, Cr2SiO4. A single-crystal X-ray diffraction and electronic absorption spectroscopy study. Structure 26:446–459. https://doi.org/10.1007/s002690050207

    Google Scholar 

  • Milke R, Dohmen R, Becker H-W, Wirth R (2007) Growth kinetics of enstatite reaction rims studied on nano-scale, Part I: methodology, microscopic observations and the role of water. Contrib Miner Petrol 154(5):519–533

    Article  Google Scholar 

  • Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims; a SIMS study using isotopically doped reactants. Contrib Miner Petrol 142(1):15–26

    Article  Google Scholar 

  • Mishin Y, Herzig C (1999) Grain boundary diffusion: recent progress and future research. Mater Sci Eng A 260(1–2):55–71

    Article  Google Scholar 

  • Mistler RE, Coble RL (1974) Grain-boundary diffusion and boundary widths in metals and ceramics. J Appl Phys 45(4):1507

    Article  Google Scholar 

  • Miyazaki T, Sueyoshi K, Hiraga T (2013) Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502(7471):321–326

    Article  Google Scholar 

  • Morris SJS, Jackson I (2009) Diffusionally assisted grain-boundary sliding and viscoelasticity of polycrystals. J Mech Phys Solids 57(4):744–761

    Article  Google Scholar 

  • Morrow CP, Kubicki JD, Mueller KT, Cole DR (2010) Description of Mg2+ release from forsterite using Ab initio methods. J Phys Chem C 114:5417–5428. https://doi.org/10.1021/jp9057719

  • Mott N (1951) The mechanical properties of metals. Proc Phys Soc 64(9):416

    Article  Google Scholar 

  • Mu S, Faul UH (2016) Grain boundary wetness of partially molten dunite. Contrib Miner Petrol 171(5):1–15

    Article  Google Scholar 

  • Mussi A, Cordier P, Demouchy S, Vanmansart C (2014) Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography. Phys Chem Miner 41(7):537–545

    Article  Google Scholar 

  • Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Miner 10(1):27–37

    Article  Google Scholar 

  • Nichols SJ, Mackwell SJ (1991) Grain growth in porous olivine aggregates. Phys Chem Miner 18(4):269–278

    Article  Google Scholar 

  • Ohuchi T, Nakamura M (2007) Grain growth in the forsteritediopside system. Phys Earth Planet Inter 160(1):1–21

    Article  Google Scholar 

  • Ohuchi T, Nakamura M, Michibayashi K (2010) Effect of grain growth on cation exchange between dunite and fluid: Implications for chemical homogenization in the upper mantle. Contrib Miner Petrol 160(3):339–357

    Article  Google Scholar 

  • Oleg P, Jacques S (2007) Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12. Geochim Cosmochim Acta 71(24):5901–5912. https://doi.org/10.1016/j.gca.2007.08.031

    Article  Google Scholar 

  • Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57(13):3694–3703

    Google Scholar 

  • Palmero P, Fantozzi G, Lomello F, Bonnefont G, Montanaro L (2012) Creep behaviour of alumina / YAG composites prepared by different sintering routes. Ceram Int 38(1):433–441. https://doi.org/10.1016/j.ceramint.2011.07.024

    Article  Google Scholar 

  • Pang Y, Wynblatt P (2006) Effects of Nb doping and segregation on the grain boundary plane distribution in TiO2. J Am Ceram Soc 89(2):666–671. https://doi.org/10.1111/j.1551-2916.2005.00759.x

    Article  Google Scholar 

  • Parman SW, Kurz MD, Hart SR, Grove TL (2005) Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature 437(7062):1140–1143. https://doi.org/10.1038/nature04215

    Article  Google Scholar 

  • Paterson MS (1990) Rock deformation experimentation. In: Duba AG, Durham WB, Handin JW, Wang HF (eds) The Brittle-Ductile transition in rocks. American Geophysical Union, Washington, pp 187–194. https://doi.org/10.1029/GM056p0187

  • Peterson NL (1983) Grain-boundary diffusion in metals. Int Metals Rev 28(2):65–91

  • Petry C, Chakraborty S, Palme H, Etry CHP, Hakraborty SUC, Alme HEP (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68(20):4179–4188

    Article  Google Scholar 

  • Phakey P, Dollinger G, Christie J (1972) Transmission electron microscopy of experimentally deformed olivine crystals. Am Miner 61:117–138

    Google Scholar 

  • Poirier J-P (1985) Creep of crystals: high-temperature deformation processes in metals, ceramics, and minerals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raabe D, Herbig M, Sandlöbes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18(4):253–261

    Article  Google Scholar 

  • Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2(April):113–1127

    Google Scholar 

  • Randle V, Davies H (2002) A comparison between three-dimensional and two-dimensional grain boundary plane analysis. Ultramicroscopy 90(2–3):153–162

    Article  Google Scholar 

  • Randle V, Engler O (2014) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. CRC Press. https://books.google.de/books?id=yJe9BwAAQBAJ

  • Rasmussen DR, Simpson YK, Kilaas R, Carter CB (1989) Contrast effects at grooved interfaces. Ultramicroscopy 30:52–57

    Article  Google Scholar 

  • Raterron P, Bussod GY, Doukhan N, Doukhan J-C (1997) Early partial melting in the upper mantle: an A.E.M. study of a lherzolite experimentally annealed at hypersolidus conditions. Tectonophysics 279(1–4):79–91

    Article  Google Scholar 

  • Raterron P, Chopra P, Doukhan JC (2000) SiO2 precipitation in olivine: ATEM investigation of two dunites annealed at 300 MPa in hydrous conditions. Earth Planet Sci Lett 180(3–4):415–423. https://doi.org/10.1016/S0012-821X(00)00160-6

    Article  Google Scholar 

  • Raterron P, Ingrin J, Jaoul O, Doukhan N, Elie F (1995) Early partial melting of diopside under high-pressure. Phys Earth Planet Inter 89(1–2):77–88

    Article  Google Scholar 

  • Read WT, Schockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289

  • Reed B, Adams B, Bernier J, Hefferan C, Henrie A, Li S, Lind J, Suter R, Kumar M (2012) Experimental tests of stereological estimates of grain boundary populations. Acta Mater 60(6–7):2999–3010

    Article  Google Scholar 

  • Ricoult DL, Kohlstedt DL (1983) Structural width of low-angle grain boundaries in olivine. Phys Chem Miner 9(3–4):133–138

    Article  Google Scholar 

  • Roberts JJ, Tyburczy JA (1991) Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res 96(B10):16205

    Article  Google Scholar 

  • Rohrer GS (2007) The distribution of grain boundary planes in polycrystals. JOM 59(9):38–42

    Article  Google Scholar 

  • Rohrer GS (2011a) Grain boundary energy anisotropy: a review. J Mater Sci 46(18):5881–5895

    Article  Google Scholar 

  • Rohrer GS (2011b) Measuring and interpreting the structure of grain-boundary networks. J Am Ceram Soc 94(3):633–646

    Article  Google Scholar 

  • Rohrer GS (2015) The role of grain boundary energy in grain boundary complexion transitions. Curr Opin Solid State Mater Sci 20(5):231–239

    Article  Google Scholar 

  • Rohrer GS, Saylor DM, El Dasher B, Adams BL, Rollett AD, Wynblatt P (2004) The distribution of internal interfaces in polycrystals. Zeitschrift für Metallkunde 95(4):197–214

    Article  Google Scholar 

  • Rollett A, Rohrer GS (2017) Recrystallization and related annealing phenomena. https://www.elsevier.com/books/recrystallization-and-related-annealing-phenomena/rollett/978-0-08-098235-9

  • Rollett AD (2004) Crystallographic texture change during grain growth. JOM 56(4):63–68

    Article  Google Scholar 

  • Rollett AD, Gottstein G, Shvindlerman LS, Molodov DA (2004) Grain boundary mobility a brief review. Zeitschrift für Metallkunde 95(4):226–229

    Article  Google Scholar 

  • Romeu D, Beltrán-del-Rio L, Aragón JL, Gómez A (1999) Detailed atomic structure of arbitrary fcc [100] twist grain boundaries. Phys Rev B 59:5134–5141

  • Sader K, Brown A, Brydson R, Bleloch A (2010) Quantitative analysis of image contrast in phase contrast STEM for low dose imaging. Ultramicroscopy 110(10):1324–1331

    Article  Google Scholar 

  • Sano S, Saito N, Matsuda S-I, Ohashi N, Haneda H (2006) Synthesis of high density and transparent forsterite ceramics using nano-sized precursors and their dielectric properties. J Am Ceram Soc 574(89):568–574

    Article  Google Scholar 

  • Sano T, Kim CS, Rohrer GS (2005) Shape evolution of SrTiO3 crystals during coarsening in a titania-rich liquid. J Am Ceram Soc 88(4):993–996. https://doi.org/10.1111/j.1551-2916.2005.00185.x

    Article  Google Scholar 

  • Sano T, Saylor DM, Rohrer GS (2003) Surface energy anisotropy of SrTiO3 at 1400 C in air. J Am Ceram Soc 86(11):1933–1939. https://doi.org/10.1111/j.1151-2916.2003.tb03584.x

    Article  Google Scholar 

  • Saylor DM (2001) The character dependence of interfacial energies in magnesia. Thesis, Carnegie Mellon University, Pittsburgh

  • Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52(12):3649–3655

    Article  Google Scholar 

  • Saylor DM, Morawiec A, Rohrer GS (2003) Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51(13):3675–3686

    Article  Google Scholar 

  • Schäfer FN, Foley SF (2002) The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of spinel peridotite minerals. Contrib Miner Petrol 143(2):254–261

    Article  Google Scholar 

  • Seifert S, O’Neill HSC (1986) Experimental determination of activity-composition relations in Ni2SiO4–Mg2SiO4 and CO2SiO4–Mg2SiO4 olivine sloid solutions at 1200K. Geochemica et Cosmochemica Acta 51:97–104. https://doi.org/10.1016/0016-7037(87)90010-X

    Article  Google Scholar 

  • Shirpour M, Merkle R, Lin CT, Maier J (2012) Nonlinear electrical grain boundary properties in proton conducting YBaZrO3 supporting the space charge depletion model. Phys Chem Chem Phys 14(2):730. https://doi.org/10.1039/c1cp22487e

    Article  Google Scholar 

  • Smith CS (1948) Introduction to grains, phases, and interfaces-an interpretation of microstructure. Trans Met Soc AIME 175:15–51

    Google Scholar 

  • Solomon SC (1972) Seismic-wave and partial melting in the upper mantle of North America. J Geophys Res 77(8):1483–1502

  • Sommer H, Regenauer-Lieb K, Gasharova B, Siret D (2008) Grain boundaries: a possible water reservoir in the Earth’s mantle? Miner Petrol 94(1–2):1–8

    Article  Google Scholar 

  • Steinbach I (2009) Phase-field models in materials science. Modell Simul Mater Sci Eng 17(7):073001

    Article  Google Scholar 

  • Sun X-Y, Cordier P, Taupin V, Fressengeas C, Jahn S (2016) Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations. Phil Mag 96(17):1757–1772

    Article  Google Scholar 

  • Sundberg M, Cooper RF (2008) Crystallographic preferred orientation produced by diffusional creep of harzburgite: effects of chemical interactions among phases during plastic flow. J Geophys Res Solid Earth 113(12):1–16

    Google Scholar 

  • Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials, vol 51. Clarendon Press, Oxford

    Google Scholar 

  • Takei Y (1998) Constitutive mechanical relations of solid-liquid composites in terms of grain boundary contiguity. J Geophys Res 103(98):18183–18203

    Article  Google Scholar 

  • Takei Y (2017) Effects of partial melting on seismic velocity and attenuation: a new insight from experiments. Ann Rev Earth Planet Sci 45:447–470. https://doi.org/10.1146/annurev-earth-063016-015820

  • Takei Y, Holtzman BK (2009a) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 2. Compositional model for small melt fractions 114:1–18

  • Takei Y, Holtzman BK (2009b) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J Geophys Res 114(6):B06205. https://doi.org/10.1029/2008JB005850

    Google Scholar 

  • Tan BH, Jackson I, Fitz Gerald JD (1997) Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. Geophys Res Lett 24(9):1055–1058

    Article  Google Scholar 

  • Tan BH, Jackson I, Fitz Gerald JD (2001) High-temperature viscoelasticity of fine-grained polycrystalline olivine. Phys Chem Miner 28(9):641–664

    Article  Google Scholar 

  • Tasaka M, Hiraga T, Zimmerman ME (2013) Influence of mineral fraction on the rheological properties of forsterite+enstatite during grain-size-sensitive creep: 2. Deformation experiments. Journal of Geophysical Research: Solid. Earth 118(8):3991–4012

    Google Scholar 

  • ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res B: Solid Earth 109(6):1–9

    Google Scholar 

  • ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res 110(B12):B12201

    Article  Google Scholar 

  • Toramaru A, Fujii N (1986a) Connectivity of melt phase in a partially molten peridotite. J Geophys Res 91(B9):9239

    Article  Google Scholar 

  • Toramaru A, Fujii N (1986b) Connectivity of melt phase in a partially molten upper mantle rocks from experiments and percolation theory. J Geophys Res 91(B9):9239–9252

    Article  Google Scholar 

  • Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. ONR technical report

  • Van der Wal D, Chopra P, Drury M, Gerald JF (1993) Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys Res Lett 20(14):1479–1482

    Article  Google Scholar 

  • Vaughan PJ, Kohlstedt DL, Waff HS (1982) Distribution of the glass phase in hot-pressed, olivine-basalt aggregates: an electron microscopy study. Contrib Miner Petrol 81:253–261

    Article  Google Scholar 

  • von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res 91:9261

    Article  Google Scholar 

  • Vonlanthen P, Grobety B (2008) CSL grain boundary distribution in alumina and zirconia ceramics. Ceram Int 34(6):1459–1472

    Article  Google Scholar 

  • Waff HS, Bulau JR (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostratic stress conditions. J Geophys Res 84:6109–6114

  • Wagner J, Adjaoud O, Marquardt K, Jahn S (2016) Anisotropy of self-diffusion in forsterite grain boundaries derived from molecular dynamics simulations. Contrib Miner Petrol 171:98. https://doi.org/10.1007/s00410-016-1308-y

    Article  Google Scholar 

  • Walte N, Rubie D, Bons P, Frost D (2011) Deformation of a crystalline aggregate with a small percentage of high-dihedral-angle liquid: Implications for coremantle differentiation during planetary formation. Earth Planet Sci Lett 305(1–2):124–134

    Article  Google Scholar 

  • Walte NP, Bons PD, Koehn D (2003) Disequilibrium melt distribution during static recrystallization. Tectonophysics 31(11):1009–1012

    Google Scholar 

  • Walte NP, Bons PD, Passchier CW (2005) Deformation of melt-bearing systemsinsight from in situ grain-scale analogue experiments. J Struct Geol 27(9):1666–1679

    Article  Google Scholar 

  • Wanamaker BJ, Kohlstedt DL (1991) The effect of melt composition on the wetting angle between silicate melts and olivine. Phys Chem Miner 18(1):26–36

    Article  Google Scholar 

  • Watanabe T (1979) Misorientation dependence of grain boundary sliding in 1010 tilt zinc bicrystals. Philosophical magazine. Phys Condensed Matter, Defects Mech Prop [0141-8610] 40(5):667–683

  • Watanabe T (1983) Observations of plane-matching grain boundaries by electron channelling patterns. Philosophical magazine. A, Physics of condensed matter, defects and Mech Prop [0141-8610], 47(1):141 –146

  • Watanabe T, Ara KI, Yoshim K, Oikawa H (1989) Texture and grain boundary character distribution (GBCD) in rapidly solidified and annealed Fe-6.5 mass% Si ribbons. Philos Mag Lett 59(2):47–52. https://doi.org/10.1080/09500838908214776

    Article  Google Scholar 

  • Watson GW, Oliver PM, Parker SC (1997) Computer simulation of the structure and stability of forsterite surfaces. Phys Chem Miner 25(1):70–78

    Article  Google Scholar 

  • Wenk H-R (1985) Preferred orientation in deformed metal and rocks: an introduction to modern texture analysis. Academic press Inc, New York

    Google Scholar 

  • White JC, White SH (1981) On the structure of grain boundaries in tectonites. Tectonophysics 78(1–4):613–628

    Article  Google Scholar 

  • Williams DB, Carter BC (2009) Transmission electron microscopy. Springer, US

  • Wirth R (1996) Thin amorphous films (1–2 nm) at olivine grain boundaries in mantle xenoliths from San Carlos, Arizona. Contrib Mineral Petrol 124(1):44–54

    Article  Google Scholar 

  • Wirth R (2004) Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. https://doi.org/10.1127/0935-1221/2004/0016-0863

  • Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1–2):65–101

    Article  Google Scholar 

  • Yasuda S, Yoshida H, Yamamoto T, Sakuma T (2004) Improvement of high-temperature creep resistance in polycrystalline Al2O3 by cations co-doping. Mater Trans 45(7):2078–2082. https://doi.org/10.2320/matertrans.45.2078

    Article  Google Scholar 

  • Zaefferer S, Wright SI (2009) Electron backscatter diffraction in materials science, 2nd edn. Springer, New York

    Google Scholar 

  • Zhou W, Wang ZL (2007) Scanning microscopy for nanotechnology: techniques and applications. Springer, New York. https://books.google.de/books?id=i3XGkx1dc0UC

Download references

Acknowledgements

We gratefully acknowledge discussions with our colleagues John Fitz Gerald, Ian Jackson and Chris Cline as well as Hauke Marquardt and Nobuyoshi Miyajima. We are also grateful for the technical support at ANU (Harri Kokkonen, Hayden Miller) and BGI (Hubert Schulz, Raphael Njul). U.F. acknowledges support from NSF grant EAR-1321889 and EAR-1464024. KM acknowledges support from the German Science Foundation (MA6287/3, MA6287/6). We also acknowledge the Earthquake Research Institute’s cooperative research program, and thank Sanae Koizumi for the sample synthesis at ERI in Tokyo. The FEI Scios FIB machine at BGI Bayreuth is supported through grant INST 91/315-1 FUGG. We are grateful to Sylvie Demouchy and one anonymous reviewer for their meticulous and thorough reviews. Any surviving errors of omission or commission are entirely ours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Marquardt.

Additional information

Invited review article to commemorate the 40th anniversary of the journal.

Appendices

Appendix

Nomenclature and definitions

Interface Where two media are in contact we speak of an interface. This term encompasses, solid–liquid, solid–gaseous, gaseous–liquid contacts as well as solid–solid, gas–gas, or liquid–liquid contact zones. Both grain and phase boundaries are interfaces.

Phase boundary Phase boundaries are interfaces between two different solid phases, generally minerals.

Grain boundary The grain boundary defines the interface where two minerals of the same phase are in contact. The only characteristic that varies between the two grains (crystals) is the orientation of the crystal lattice. The grain boundary itself needs five macroscopic parameters for its macroscopic geometry description.

Triple junction / line Three grains of one phase meet to form a line in 3D-space and a point in a 2D section, when interfacial energies are approximately equal this triple junction has 120\(^{\circ }\) angles, typical for soap foam.

Quadrupole junction Four grains of the same phase meet in a nod (Chaim (1997).

Grain boundary structure The atomic configuration that is repetitive along the grain boundary. Different geometric models have been developed to describe grain boundary structures.

Coincidence side lattice model (CSL) Probably, the most successful geometric model that yields the density of coinciding lattice points of two super imposed adjacent crystal lattices. The inverse of coinciding number of lattice sides, n, yields the \(\Sigma\)-value: \(\Sigma = 1/n\).

Grain boundary character distribution (GBCD) The distribution of the grain boundary geometries in their five parameter space for a polycrystalline sample can be described by the GBCD (Watanabe 1979, 1983; Watanabe et al. 1989).

Grain boundary energy The grain boundary energy is an anisotropic property of grain boundaries (e.g. Smith 1948). The anisotropy arises from the different structures of the grain boundaries at the nm-atomic-scale.

Grain boundary width The grain boundary width is a controversial term, that encompasses the structural grain boundary width (Clarke 1979a), but also includes the effective grain boundary width for various processes that can be orders of magnitude larger.

Grain boundary segregation Grain boundaries are preferential sites for segregation of impurities and elements incompatible in the perfect crystal lattice. This results in a thin layer with a chemical composition that differs from the crystal volume. The creep resistance of several non-geological materials generally increases significantly due to grain boundary segregation (Cho et al. 1999; Yasuda et al. 2004; Milas et al. 2008; Harmer 2010), in rare cases also decreases (Yasuda et al. 2004). Segregation can cause variation of electrical conductivity, for example its enhancement in the case of proton doping (Shirpour et al. 2012).

Grain boundary layer and film The terms have been coerced by Clarke in several publications (Clarke 1979a, b, 1987). Film refers to the existence of a chemically and structurally distinct film fully covering all grain boundaries in ceramics. It is noticeable that such films have a wetting angle of \(0^{\circ }\) and are thermodynamically stable.

Grain boundary layer Differs from the film as its properties are much less defined and less well understood and do not meet the full wetting criterion. The term grain boundary layer is used to refer to the chemically and structurally distinct region of the grain boundary that results from the mismatch of the adjacent crystals, segregation of impurities or incompatible elements. Layers can include melted regions that are > 10 nm wide and have bulk melt properties in case of olivine.

Grain boundary pre-melting Pre-melting is a phenomenon where a thin region at the grain boundary melts at a temperature below the bulk melting temperature, or the bulk eutectic (melting) temperature. Experimentally this has been shown for ice, Pb, W doped with Ni and other unary systems, and is reviewed in several articles (Luo and Chiang 2008; Mellenthin et al. 2008). Pre-melting has not been observed in olivine as yet.

Complexion Grain boundary films and layers can often be regarded as interface-stabilised phases that are thermodynamically stable and have distinct structural and chemical properties with temperature- (Kelly et al. 2016) and pressure-dependent transitions. These interface-stabilised phases are called complexions. In recent years, grain boundary complexions gained more and more interest in material sciences (Rohrer 2011b; Bojarski 2014). However in geology, complexions have not yet been described as general grain boundary features might, however, occur and if we interpret the term widely they encompass quasi-crystalline materials which are treated as interface phenomena theoretically by Romeu et al. (1999) have been observed associated with olivine in Khatyrka meteorite (Bindi et al. 2015), however, not explicitly as interface phase. Note that complexions may not be of first-order importance as geological relevant materials are usually chemically highly complex, probably inhibiting the formation of complexions or resulting in such a high variability of complexions that their identification and study might prove difficult or impossible. For the sake of completeness, we like the reader to note that complexions have been shown to affect grain growth (Dillon et al. 2010) as well as sintering behaviour (Luo and Chiang 2008; Luo 2012).

Note that some of the above terms are partially interchangeable and have evolved during the years. The literature of interfaces, grain- and phase boundaries tries to categorise a subject with fluent boundaries; thus, the nomenclature is partially fluent as well.

Additional data

See Fig. 18.

Fig. 18
figure 18

Original HRTEM micrograph acquired without objective aperture. Same data as in Fig. 6. In the latter, it is displayed with frequencies only up to an equivalent d-spacing of 0.24 nm and background subtracted

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marquardt, K., Faul, U.H. The structure and composition of olivine grain boundaries: 40 years of studies, status and current developments. Phys Chem Minerals 45, 139–172 (2018). https://doi.org/10.1007/s00269-017-0935-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0935-9

Keywords

Navigation