Skip to main content
Log in

Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Grain boundaries influence many physical and chemical properties of crystalline materials. Here, we perform molecular dynamics simulations to study the structure of a series of [100] symmetric tilt grain boundaries in Mg2SiO4 forsterite. The present results show that grain boundary energies depend significantly on misorientation angle. For small misorientation angles (up to 22°), grain boundary structures consist of an array of partial edge dislocations with Burgers vector \(\frac{1}{2}[001]\) associated with stacking faults and their energies can be readily fit with a model which adds the Peach-Koehler equation to the Read-Shockley dislocation model for grain boundaries. The core radius of partial dislocations and the spacing between the partials derived from grain boundary energies show that the transition from low- to high-angle grain boundaries occurs for a misorientation angle between 22° and 32°. For high misorientation angles (32.1° and 60.8°), the cores of dislocations overlap and form repeated structural units. Finally, we use a low energy atomic configuration obtained by molecular dynamics for the misorientation of 12.18° as input to simulate a high-resolution transmission electron microscopy (HRTEM) image. The simulated image is in good agreement with an observed HRTEM image, which indicates the power of the present approach to predict realistic atomic structures of grain boundaries in complex silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adjaoud O, Steinle-Neumann G, Jahn S (2008) Mg2SiO4 liquid under high pressure from molecular dynamics. Chem Geol 256:184–191

    Article  Google Scholar 

  • Adjaoud O, Steinle-Neumann G, Jahn S (2011) Transport properties of Mg2SiO4 liquid at high pressure: physical state of a magma ocean. Earth Planet Sci Lett 312:463–470

    Article  Google Scholar 

  • Aguado A, Bernasconi L, Jahn S, Madden PA (2003) Multipoles and interaction potentials in ionic materials from planewave-DFT calculations. Faraday Discuss 124:171–184

    Article  Google Scholar 

  • Dawson I, Bristowe PD, Lee MH, Payne MC, Segall MD, White JA (1996) First-principles study of a tilt grain boundary in rutile. Phys Rev B 54:13727–13733

    Article  Google Scholar 

  • de Kloe PA (2001) Deformation mechanisms and melt nano-structures in experimentally deformed olivine-orthopyroxene rocks with low melt fractions: an electron microscopy study. Geologica ultraiectina 201, ISBN: 905744058X

  • de Leeuw NH, Parker SC, Catlow CRA, Price GD (2000) Proton-containing defects at forsterite 010 tilt grain boundaries and stepped surfaces. Am Miner 85:1143–1154

    Google Scholar 

  • Dobson DP, Alfredson M, Holzapfel C, Brodholt JP (2007) Grain-boundary enrichment of iron on magnesium silicate perovskite. Eur J Miner 19:617–622

    Article  Google Scholar 

  • Duffy DM (1986) Grain boundaries in ionic crystals. J Phys C Solid State Phys 19:4393–4412

    Article  Google Scholar 

  • Durinck J, Legris A, Cordier P (2005) Pressure sensitivity of forsterite slip systems: first-principle calculations of generalised stacking faults. Phys Chem Miner 32:646–654

    Article  Google Scholar 

  • Durinck J, Carrez P, Cordier P (2007) Application of the Peierls-Nabarro model to dislocations in forsterite. Eur J Miner 19:631–639

    Article  Google Scholar 

  • Duyster J, Stöckhert B (2001) Grain boundary energies in olivine derived from natural microstructures. Contrib Miner Petrol 140:567–576

    Article  Google Scholar 

  • Estrin Y, Gottstein G, Rabkin E, Shvindlerman LS (2000) On the kinetics of grain growth inhibited by vacancy generation. Scr Mat 43:141–147

    Article  Google Scholar 

  • Eshelby JD, Read WT, Shockley W (1953) Anisotropic elasticity with applications to dislocation theory. Acta Metall 1:251–259

    Article  Google Scholar 

  • Fabris S, Elsässer C (2001) \(\Upsigma 13\,(10\overline{1}4)\) twin in α-Al2O3: a model for a general grain boundary. Phys Rev B 64:245117

    Article  Google Scholar 

  • Farkas D (2000) Atomistic theory and computer simulation of grain boundary structure and diffusion. J Phys Condens Mat 12:497–516

    Article  Google Scholar 

  • Faul UH, Fitz Gerald JD, Farla RJM, Ahlefeldt R, Jackson I (2011) Dislocation creep of fine-grained olivine. J Geophys Res 116:B01203

    Article  Google Scholar 

  • Foreman AJE (1955) Dislocation energies in anisotropic crystals. Acta Metall 3:322–330

    Article  Google Scholar 

  • Frank FC (1951) The resultant content of dislocations in an arbitrary intercrystalline boundary. Report on a symposium on plastic deformation of crystalline solids. Carnegie Institute of Technology and Office of Naval Research, pp 150–154

  • Gleiter H, Chalmers B (1972) High-angle grain boundaries. Pergamon Press, Oxford

    Google Scholar 

  • Gurmani FS, Jahn S, Brasse H, Schilling FR (2011) Atomic scale view on partially molten rocks: molecular dynamics simulations of melt-wetted olivine grain boundaries. J Geophys Res 116:B12209

    Article  Google Scholar 

  • Haisma J, Spierings BACM, Biermann UKP, van Gorkum AA (1994) Diversity and feasibility of direct bonding: a survey of a dedicated optical technology. Appl Opt 33:1154–1168

    Article  Google Scholar 

  • Harding JH, Harris DJ, Parker SC (1999) Computer simulation of general grain boundaries in rocksalt oxides. Phys Rev B 60:2740–2746

    Article  Google Scholar 

  • Hartmann K, Wirth R, Heinrich W (2010) Synthetic near \(\Upsigma 5\,(210)/100\). grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Miner 37:291–300

    Article  Google Scholar 

  • Hazen RM (1976) Effects of temperature and pressure on the crystal structure of forsterite. Am Miner 61:1280–1293

    Google Scholar 

  • Heinemann S, Wirth R, Dresen G (2001) Synthesis of feldspar bicrystals by direct bonding. Phys Chem Miner 28:685–692

    Article  Google Scholar 

  • Heinemann S, Wirth R, Dresen G (2003) TEM study of a special grain boundary in a synthetic K-feldspar bicrystal: manebach twin. Phys Chem Miner 30:125–130

    Article  Google Scholar 

  • Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9° to 21.5°. Phys Chem Miner 32:229–240

    Article  Google Scholar 

  • Hill R (1952) The Elastic Behaviour of a crystalline aggregate. Proc Phys Soc Lond 65:349–355

    Article  Google Scholar 

  • Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. McGraw-Hill, New York, Wiley, New York

  • Huang YH, Zhang JM, Xu KW (2006) Energy and volume expansion in \(\hbox{Ag}[\overline{1}10]\). Appl Surf Sci 253:698–702

    Article  Google Scholar 

  • Ikuhara Y, Nishimura H, Nakamura A, Matsunaga K, Yamamoto T, Lagerlöf KPD (2003) Dislocation structures of low-angle and near-\(\Upsigma 3\) grain boundaries in Alumina Bicrystals. J Am Ceram Soc 86:595–602

    Article  Google Scholar 

  • Jahn S, Madden PA (2007) Modeling earth materials from crustal to lower mantle conditions: a transferable set of interaction potentials for the CMAS system. Phys Earth Planet Inter 162:129–139

    Article  Google Scholar 

  • Jahn S (2008) Atomic structure and transport properties of MgO-Al2O3 melts: a molecular dynamics simulation study. Am Miner 93:1486–1492

    Article  Google Scholar 

  • Jahn S, Martoňák R (2008) Plastic deformation of orthoenstatite and the ortho- to high-pressure clinoenstatite transition: a metadynamics simulation study. Phys Chem Miner 35:17–23

    Article  Google Scholar 

  • Jahn S, Martoňák R (2009) Phase behavior of protoenstatite at high pressure studied by atomistic simulations. Am Miner 94:950–956

    Article  Google Scholar 

  • Jahn S (2010) Integral modeling approach to study the phase behavior of complex solids: application to phase transitions in MgSiO3 pyroxenes. Acta Cryst A 66:535–541

    Article  Google Scholar 

  • Karakasidis TE, Meyer M, (2000) Molecular dynamics simulation of the atomic structure of a NiO tilt grain boundary at high temperature. Modell Simul Mater Sci Eng 8:117–132

    Article  Google Scholar 

  • Keller LM, Rainer A, Wirth R, Schmid DW, Kunze K (2006) Enhanced mass transfer through short-circuit diffusion: growth of garnet reaction rims at eclogite facies conditions. Am Miner 91:1024–1038

    Article  Google Scholar 

  • Körner W, Elsässer C (2010) First-principles density functional study of dopant elements at grain boundaries in ZnO. Phys Rev B 81:085324

    Article  Google Scholar 

  • MacPherson RD, Srolovitz DJ (2007) The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446:1053–1055

    Article  Google Scholar 

  • Madden PA, Heaton R, Aguado A, Jahn S (2006) From first-principles to material properties. J Mol Struct (Theochem) 771:9–18

    Article  Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  Google Scholar 

  • Miller HM, Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004) Crystallographic distribution of internal interfaces in spinel polycrystals. Mater Sci Forum 467–470:783–788

    Article  Google Scholar 

  • Mishin Y, Farkas D (1998) Atomistic simulation of [001] symmetrical tilt grain boundaries in NiAl. Philo Mag A 78:29–56

    Google Scholar 

  • Mitsuma T, Tohei T, Shibata N, Mizoguchi T, Yamamoto T, Ikuhara Y (2011) Structures of a \(\Upsigma = 9, [110]/{221}\) symmetrical tilt grain boundary in SrTiO 3. J Mater Sci 46:4162–4168

    Article  Google Scholar 

  • Mullins WW (1956) Two-dimensional motion of idealized grain boundaries. J Appl Phys 27:900–904

    Article  Google Scholar 

  • Nishimura H, Matsunaga K, Saito T, Yamamoto T, Ikuhara Y (2003) Atomic structures and energies of \(\Upsigma 7\) symmetrical tilt grain boundaries in Alumina Bicrystals. J Am Ceram Soc 86:574–580

    Article  Google Scholar 

  • Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Article  Google Scholar 

  • Oba F, Tanaka I, Nishitani SR, Adachi H, Slater B, Gay DH (2000) Geometry and electronic structure of \([0001]/(\overline{1}\overline{2}30)\,\Upsigma = 7\) symmetric tilt boundary in ZnO. Philo Mag A 80:1567–1581

    Article  Google Scholar 

  • Plössl A, Kraeuter G (1999) Wafer direct bonding: tailoring adhesion between brittle materials. Mater Sci Eng R 25:1–88

    Article  Google Scholar 

  • Poirier JP, Nicolas A (1975) Deformation-Induced Recrystallization due to progressive misorientation of subgrains, with special reference to Mantle Peridotites. J Geol 83:707–720

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  • Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289

    Article  Google Scholar 

  • Rohrer GS (2011) Measuring and interpreting the structure of grain-boundary networks. J Am Ceram Soc 94:633–646

    Article  Google Scholar 

  • Rohrer GS, Li J, Lee S, Rollett AD, Groeber M, Uchic MD (2010) Deriving the grain boundary character distribution and relative grain boundary energies from three dimensional EBSD data. Mater Sci Tech 26:661–669

    Google Scholar 

  • Saiz E, Cannon RM, Tomsia AP (1999) Energetics and atomic transport at liquid metal/Al2O3 interfaces. Acta Mater 47:4209–4220

    Article  Google Scholar 

  • Sato Y, Mizoguchi T, Oba F, Ikuhara Y, Yamamot T (2005) Arrangement of multiple structural units in a [0001]\(\Upsigma 49\) tilt grain boundary in ZnO. Phys Rev B 72:064109

    Article  Google Scholar 

  • Sato Y, Yamamoto T, Ikuhara Y (2007) Atomic structures and electrical properties of ZnO grain boundaries. J Am Ceram Soc 90:337–357

    Article  Google Scholar 

  • Sato Y, Mizoguchi T, Shibata N, Yamamoto T, Hirayama T, Ikuhara Y (2009) Atomic-scale segregation behavior of Pr at a ZnO [0001] \(\Upsigma 49\) tilt grain boundary. Phys Rev B 80:094114

    Article  Google Scholar 

  • Saylor DM, Morawiec A, Rohrer GS (2003a) Distribution of grain boundaries in Magnesia as a function of five macroscopic parameters. Acta Mater 51:3663–3674

    Article  Google Scholar 

  • Saylor DM, Morawiec A, Rohrer GS (2003b) The relative free energies of grain boundaries in Magnesia as a function of five macroscopic parameters. Acta Mater 51:3675–3686

    Article  Google Scholar 

  • Saylor DM, El-Dasher BS, Sano T, Rohrer GS (2004a) Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670–676

    Article  Google Scholar 

  • Saylor DM, El-Dasher BS, Pang Y, Miller HM, Wynblatt P, Rollett AD, Rohrer GS (2004b). Habits of grains in dense polycrystalline solids. J Am Ceram Soc 87:724–726

    Article  Google Scholar 

  • Seki A, Hellman O, Tanaka SI (1996) Calculation of grain boundary energies and structures in copper [001] twist boundaries using the modified embedded atom method. Scr Metall 34:1867–1870

    Article  Google Scholar 

  • Shadrake LG, Guiu F (1976) Dislocations in polyethylene crystals: line energies and deformation modes. Phil Mag 34:565–581

    Article  Google Scholar 

  • Shen TD, Zhang J, Zhao Y (2008) What is the theoretical density of a nanocrystalline material?. Acta Mater 56:3663–3671

    Article  Google Scholar 

  • Shvindlerman LS, Gottstein G, Ivanov VA, Molodov DA, Kolesnikov D, Lojkowski W (2006) Grain boundary excess free volume-direct thermodynamic measurement. J Mater Sci 41:7725–7729

    Article  Google Scholar 

  • Smith DA (1996) On the general grain boundary. Interface Sci 4:11–27

    Google Scholar 

  • Stadelmann P (1987) EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–146. http://cimewww.epfl.ch/people/stadelmann/jemswebsite/jems.html

  • Steeds JW (1973) Introduction to anisotropic elasticity theory of dislocations. Oxford University Press, Oxford

    Google Scholar 

  • Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University Press, Oxford

    Google Scholar 

  • Suzuki I, Anderson OL, Sumino Y (1983) Elastic properties of a single-crystal forsterite Mg2SiO4 up to 1200 K. Phys Chem Miner 10:38–64

    Article  Google Scholar 

  • Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333

    Article  Google Scholar 

  • Uesugi T, Higashi K (2011) First-principles calculation of grain boundary energy and grain boundary excess free volume in aluminum: role of grain boundary elastic energy. J Mater Sci 46:4199–4205

    Article  Google Scholar 

  • Verma AK, Karki BB (2010) First-principles simulations of MgO tilt grain boundary: structure and vacancy formation at high pressure. Am Miner 95:1035–1041

    Article  Google Scholar 

  • Walker AM, Gale JD, Slater B, Wright K (2005) Atomic scale modelling of the cores of dislocations in complex materials part 2: applications. Phys Chem Chem Phys 7:3235–3242

    Article  Google Scholar 

  • Watson GW, Kelsey TE, de Leeuw NH, Harris DJ, Parker SC (1996) Atomistic simulation of dislocations, surfaces and interfaces in MgO. J Chem Soc Faraday Trans 92:433–438

    Article  Google Scholar 

  • Watson GW, Oliver PM, Parker SC (1997) Computer simulation of the structure and stability of forsterite surfaces. Phys Chem Miner 25:70–78

    Article  Google Scholar 

  • Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Min 16:863–876

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG) with grants to OA (DR213/13-1), KM (HE2015/11-1), and SJ (JA1469/4-1). We greatly appreciate helpful discussion with Richard Wirth and Sergio Speziale. We thank Stefan Heinemann for providing HRTEM image (Fig. 9a). KM likes to thank Tore Niermann for his time, help and patience during HRTEM image simulation. The comments of two anonymous reviewers significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Adjaoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adjaoud, O., Marquardt, K. & Jahn, S. Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys Chem Minerals 39, 749–760 (2012). https://doi.org/10.1007/s00269-012-0529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0529-5

Keywords

Navigation