Skip to main content

Advertisement

Log in

Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Olivine phenocrysts in ugandite and leucite basanite from the western branch of the East African Rift have been analysed for up to 34 trace elements by Laser-ICP-MS with detection limits as low as 1 ppb. A combination of point analyses with varying ablation crater diameters and line scans allow the identification of subtle zonations from core to rim, as well as characterization of the chemical effects of contamination along cracks. Trace element concentrations are remarkably uniform between large and small phenocrysts; fractionated leucite basanites (Mg# 59) have higher D Ca and D Al, and less fractionated LREE/HREE than MgO-rich ugandites (Mg# 75–80). Minor zonation is seen in elements with cation charges from 5+ to 2+ (P, Ti, Zr, Cr, Al, Sc, V, Cu, Mn, Ni) and show correlation between Ti and Al, but not P. Early phenocryst cores with high Li or Ni, low Mn, or enrichments in many trace elements can be identified, whereas xenocrysts have exceptionally low Na, Cr, Ti, V and Co. Partition coefficients for Ni are 31–35, less than in lamproites, with which they demonstrate an approximately linear correlation with K2O content, K2O/Al2O3 and K2O/Na2O of the melt, but none with SiO2 content or Mg#. D-values for Cr, Mn and Co overlap with those of basalts, whereas those for Sc (0.011–0.018), Zn (0.44–0.49) and Ga (0.006–0.007) are lower. D V of various potassic rocks (0.015 in the Ugandan rocks) confirms the dependence on fO2 calibrated by the Fe3+/(Fe3++Fe2+) of spinels; the Ugandan potassic rocks crystallized at fO2 = FMQ to FMQ + 1. The ugandite olivines have some trace element characteristics reminiscent of those in metasomatized Kaapvaal peridotites, but not ocean islands. Line scan analyses are contaminated in Al, Ca, Cu, Ga, Sr, Zr, Nb, La and Ce, elements that are also concentrated in microcracks between subgrains, indicating smearing out during polishing, and demonstrating that large spot analyses produce the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17

    Article  Google Scholar 

  • Beattie P (1994) Systematics and energetics of trace element partitioning between olivine and silicate melts—implications for the nature of mineral-melt partitioning. Chem Geol 117:57–71

    Article  Google Scholar 

  • Bédard JH (2005) Partitioning coefficients between olivine and silicate melts. Lithos 83:394–419

    Article  Google Scholar 

  • Bedini RM, Bodinier J-L (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900

    Article  Google Scholar 

  • Bell BR, Williamson IT (1994) Picritic basalts from the Paleocene lava field of West-Central Skye, Scotland—evidence for parental magma compositions. Mineral Mag 58:347–356

    Article  Google Scholar 

  • Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos, Proceedings of the 9th International Kimberlite Conference 112S:201–212

  • Canil D, Bellis AJ (2008) Phase equilibria in a volatile-free kimberlite at 0.1 MPa and the search for primary kimberlite magma. Lithos 105:111–117

    Article  Google Scholar 

  • Canil D, Fedortchouk Y (2001) Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. Can Mineral 39:319–330

    Article  Google Scholar 

  • Chakrabarti R, Basu AR, Santo AP, Tedesco D, Vaselli O (2009) Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics, Western Rift, East African Rift system. Chem Geol 259:273–289

    Article  Google Scholar 

  • Chung SL, Wang KL, Crawford AJ, Kamenetsky VS, Chen CH, Lan CY, Chen CH (2001) High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos 59:153–170

    Article  Google Scholar 

  • Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelevic D, Venturelli G (2009) Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107:68–92

    Article  Google Scholar 

  • De Bruiyn H, Schoch AE, van der Westhuizen WA, Myburgh CA (2000) Picrite from the Katse area, Lesotho: evidence for flow differentiation. J Afr Earth Sc 31:657–668

    Article  Google Scholar 

  • De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270:196–215

    Article  Google Scholar 

  • Duke JM (1976) Distribution of the period four transition elements among olivine, calcic pyroxene and mafic silicate liquid: experimental results. J Petrol 17:499–521

    Google Scholar 

  • Dunn T (1987) Partitioning of Hf, Lu, Ti and Mn between olivine, clinopyroxene and basaltic liquid. Contrib Mineral Petrol 96:476–484

    Article  Google Scholar 

  • Dunn T, Sen C (1994) Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems—a combined analytical and experimental study. Geochim Cosmochim Acta 58:717–733

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICP-MS study. Earth Planet Sci Lett 154:53–71

    Article  Google Scholar 

  • Evans TM, O’Neill HSC, Tuff J (2008) The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS. Geochim Cosmochim Acta 72:5708–5721

    Article  Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace element partitioning in volcanic rocks. Chem Geol 117:251–284

    Article  Google Scholar 

  • Foley SF (1985) The oxidation state of lamproitic magmas. Tschermaks Mineralogische und Petrographische Mitteilungen 34:217–238

    Article  Google Scholar 

  • Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453

    Article  Google Scholar 

  • Foley SF (1993) An experimental study of olivine lamproite—first results from the diamond stability field. Geochim Cosmochim Acta 57:483–489

    Article  Google Scholar 

  • Foley SF, Jenner GA (2004) Trace element partitioning in lamproitic magmas—the Gaussberg olivine leucitite. Lithos 75:19–38

    Article  Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase-relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 Kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93:46–55

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth-Sci Rev 24:81–134

    Article  Google Scholar 

  • Foley SF, Andronikov AV, Jacob DE, Melzer S (2006) Evidence from Antarctic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift. Geochim Cosmochim Acta 70:3096–3120

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among silicate melt, and sulfide melt: constraints on core formation in the earth and mars. Geochim Cosmochim Acta 61:1829–1846

    Article  Google Scholar 

  • Grant KJ, Wood BJ (2010) Experimental study of the incorporation of Li, Sc, Al and other trace elements into olivine. Geochim Cosmochim Acta 74:2412–2428

    Article  Google Scholar 

  • Green TH (1994) Experimental studies of trace element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chem Geol 117:1–36

    Article  Google Scholar 

  • Gregoire M, Lorand JP, O’Reilly SY, Cottin JY (2000) Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: implications for the oceanic mantle budget of high-field strength elements. Geochim Cosmochim Acta 64:673–694

    Article  Google Scholar 

  • Gupta AK, Green DH, Taylor WR (1987) The liquidus surface of the system forsterite-nepheline-silica at 28 kb. Am J Sci 287:560–565

    Article  Google Scholar 

  • Hagerty JJ, Shearer CK, Vaniman DT, Burger PV (2006) Identifying the effects of petrologic processes in a closed basaltic system using trace-element concentrations in olivines and glasses: implications for comparative planetology. Am Mineral 91:1499–1508

    Article  Google Scholar 

  • Hayman PC, Cas RAF, Johnson M (2008) Difficulties in distinguishing coherent from fragmental kimberlite: a case study of the Muskox pipe (Northern Slave Province, Nunavut, Canada). J Volcanology Geotherm Res 174:139–151

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427:699–703

    Article  Google Scholar 

  • Jaques AL, Lewis JD, Smith CB, Gregory GP, Ferguson J, Chappell BW, McCulloch MT (1984) The diamond-bearing ltrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In: Kornprobst J (ed) Kimberlites I. Kimberlites and related rocks. Elsevier, Amsterdam, pp 225–254

    Google Scholar 

  • Jeffries TE, Perkins WT, Pearce NJG (1995) Measurements of trace-elements in basalts and their phenocrysts by laser probe microanalysis inductively-coupled plasma-mass spectrometry (LPMA-ICP-MS). Chem Geol 121:131–144

    Article  Google Scholar 

  • Jiang YH, Jiang SY, Ling HF, Dai BZ (2006) Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth Planet Sci Lett 241:617–633

    Article  Google Scholar 

  • Kaeser B, Kalt A, Pettke T (2006) Evolution of lithospheric mantle beneath the Marsabit volcanic field (northern Kenya): constraints from textural, P-T and geochemical studies on xenoliths. J Petrol 47:2149–2184

    Article  Google Scholar 

  • Kamenetsky VS, Sobolev AV, Joron JL, Semet MP (1995) Petrology and geochemistry of Cretaceous ultramafic volcanics from eastern Kamchatka. J Petrol 36:637–662

    Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839

    Article  Google Scholar 

  • Keller J, Zaitsev AN, Wiedenmann D (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos 91:150–172

    Article  Google Scholar 

  • Kennedy AK, Lofgren GE, Wasserburg GJ (1993) An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules - equilibrium values and kinetic effects. Earth Planet Sci Lett 115:177–195

    Article  Google Scholar 

  • Kerr AC, Tarney J, Marriner GF, Klaver GT, Saunders AD, Thirlwall MF (1996) The geochemistry and petrogenesis of the late-Cretaceous picrites and basalts of Curacao, Netherlands Antilles: a remnant of an oceanic plateau. Contrib Mineral Petrol 124:29–43

    Article  Google Scholar 

  • Kjarsgaard BA, Pearson DG, Tappe S, Nowell GM, Dowall DP (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos, Proceedings of the 9th International Kimberlite Conference 112S:236–248

  • Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 KB with applications. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Krishnamurthy P, Gopalan K, MacDougall JD (2000) Olivine compositions in picrite basalts and the Deccan volcanic cycle. J Petrol 41:1057–1069

    Article  Google Scholar 

  • Kushiro I (1975) On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. Am J Sci 275:411–431

    Article  Google Scholar 

  • Larsen LM, Pedersen AK (2000) Processes in high-mg, high-T magmas: evidence from olivine, chromite and glass in palaeogene picrites from West Greenland. J Petrol 41:1071–1098

    Article  Google Scholar 

  • Litasov KD, Litasov YD, Malkovets VG (2005) Metasomatism and transformations of the upper mantle beneath the southern Baikal territory: evidence from xenoliths of the Bartoy volcanic area. Geochem Int 43(3):242–267

    Google Scholar 

  • Lloyd FE, Nixon PH, Hornung G, Condliffe E (1987) Regional K-metasomatism in the mantle beneath the west branch of the east African Rift: alkali clinopyroxenite xenoliths in highly potassic magmas. In: Nixon PH (ed) Mantle Xenoliths. J. Wiley, London, pp 641–659

    Google Scholar 

  • Luhr JF, Carmichael ISE (1980) The Colima volcanic complex, Mexico I. Post-caldera andesites from Volcàn Colima. Contrib Mineral Petrol 71:343–372

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC, Klemme S (2009) Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Mineral Petrol 158:485–504

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC, Jenner F, Norman M, Eggins S, Arculus R, Ballhaus C (2008) Determining the redox state of basalts and picrites using V/Sc olivine-melt partitioning: experimental calibration and application to natural systems. In: Abstracts of 1st global COE symposium, Formation of Asian Network in Deep Earth Mineralogy (TANDEM), Matsuyama, Japan

  • Maria AH, Luhr JF (2008) Lamprophyres, Basanites, and Basalts of the Western Mexican volcanic belt: volatile contents and a VeinWallrock melting relationship. J Petrol 49:2123–2156

    Article  Google Scholar 

  • Melluso L, Beccaluva L, Brotzu P, Grehnanin A, Gupta AK, Morbidelli L, Traversa G (1995) Constraints on the mantle sources of the Deccan traps from the petrology and geochemistry of the basalts of Gujarat State (western India). J Petrol 36:1393–1432

    Google Scholar 

  • Melluso L, Lustrino M, Ruberti E, Brotzu P, Gomes CDB, Morbidelli L, Morra V, Svisero DP, D’Amelio F (2008) Major- and trace-element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaiba, Brazil. Can Mineral 46:19–40

    Article  Google Scholar 

  • Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z, Crowley MR, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivine. Contrib Mineral Petrol 155:739–765

    Article  Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York, p 442

    Google Scholar 

  • Mysen BO, Cody GD (2005) Solution mechanisms of H2O in depolymerized alkaline melts. Geochim Cosmochim Acta 69:5557–5566

    Article  Google Scholar 

  • Nabelek PI (1980) Nickel partitioning between olivine and liquid in natural basalts: Henry’s law behavior. Earth Planet Sci Lett 48:293–302

    Article  Google Scholar 

  • Neumann ER, Marti J, Mitjavila J, Wulff-Pedersen E (1999) Origin and implications of mafic xenoliths associated with Cenozoic extension-related volcanism in the Valencia Trough, NE Spain. Mineral Petrol 65:113–139

    Article  Google Scholar 

  • Neumann ER, Wulff-Pedersen E, Pearson NJ, Spencer EA (2002) Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol 43:825–857

    Article  Google Scholar 

  • Nielsen RL, Gallahan WE, Newberger F (1992) Experimentally determined mineral-melt partition-coefficients for Sc, Y and Ree for Olivine, Orthopyroxene, Pigeonite, Magnetite and Ilmenite. Contrib Mineral Petrol 110:488–499

    Article  Google Scholar 

  • Norman M, Garcia MO, Pietruszka AJ (2005) Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholefites from the 1955 eruption of Kilauea Volcano, Hawai’i, and petrogenesis of differentiated rift-zone lavas. Am Mineral 90:888–899

    Article  Google Scholar 

  • O’Neill HSC, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181

    Article  Google Scholar 

  • O’Reilly SY, Chen D, Griffin WL, Ryan CG (1997) Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry. Mineral Mag 61:257–269

    Article  Google Scholar 

  • Platz T, Foley SF, Andre L (2004) Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga Province, DR Congo. J Volcanology Geotherm Res 136:269–295

    Article  Google Scholar 

  • Pouclet A, Menot R-P, Piboule M (1981) Classement par l’analyse factorielle discriminante des laves du rift de l’Afrique centrale (Zaire, Rwanda, Uganda). C R Acad Sci de Paris 292:679–684

    Google Scholar 

  • Prelevic D, Foley SF (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidnence from extremely high-Mg olivines and Cr-rich spinel inclusions from lamproites. Earth Planet Sci Lett 256:120–135

    Article  Google Scholar 

  • Qing Q, O’Neill HSC, Hermann J (2010) Comparative diffusion coefficients of major and trace elements in olivine at 950°C from a xenocryst included in dioritic magma. Geology 38:331–334

    Article  Google Scholar 

  • Rehfeldt T, Foley SF, Jacob DE, Carlson RW, Lowry D (2008) Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberley, South Africa. Geochim Cosmochim Acta 72:5722–5756

    Article  Google Scholar 

  • Rosenthal A, Foley SF, Pearson DG, Nowell GM, Tappe S (2009) Magmatic evolution at the propagating tip of a continental rift: a geochemical study of primitive alkaline volcanic rocks of the western branch of the East African Rift. Earth Planet Sci Lett 284:236–248

    Article  Google Scholar 

  • Seifert S, O’Neill HSC, Brey GP (1988) The partitioning of Fe, Ni and Co between olivine, metal, and basaltic liquid—an experimental and thermodynamic investigation, with application to the lunar core. Geochim Cosmochim Acta 52:603–616

    Article  Google Scholar 

  • Skinner EMW, Clement CR (1979) Mineralogical classification of southern African kimberlites. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes and diamonds: their geology, petrology and geochemistry. American Geophysical Union, Washington, pp 129–139

    Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Article  Google Scholar 

  • Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Kuzmin DV, Sobolev AV (2008) Olivine inclusions in Siberian diamonds: high-precision approach to minor elements. Eur J Mineral 20:305–315

    Article  Google Scholar 

  • Sobolev NV, Logovinova AM, Zedgenizov DA, Pokhilenko N-P, Malygina EV, Kuzmin DV, Sobolev AV (2009) Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112S:701–713

    Article  Google Scholar 

  • Spandler C, O’Neill HSC (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300°C with some geochemical implications. Contributions to Mineralogy and Petrology: published on-line 11 November 2009

  • Spandler C, O’Neill HSC, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447:303–306

    Article  Google Scholar 

  • Tappe S, Foley SF, Pearson DG (2003) The kamafugites of Uganda: a mineralogical and geochemical comparison with their Italian and Brazilian analogues. Periodico Mineralogia 72:51–77

    Google Scholar 

  • Tappe S, Foley SF, Stracke A, Romer RL, Kjarsgaard BA, Heaman LM, Joyce N (2007) Craton reactivation on the Labrador Sea margins: Ar-40/Ar-39 age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet Sci Lett 256:433–454

    Article  Google Scholar 

  • Thy P (1983) Spinel minerals in transitional and alkali basaltic glasses from Iceland. Contrib Mineral Petrol 83:141–149

    Article  Google Scholar 

  • Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contrib Mineral Petrol 101:261–273

    Article  Google Scholar 

  • Ulmer P, Sweeney RJ (2002) Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim Cosmochim Acta 66:2139–2153

    Article  Google Scholar 

  • Upton BGJ, Skovgaard AC, McClurg J, Kirstein L, Cheadle M, Emeleus CH, Wadsworth WJ, Fallick AE (2002) Picritic magmas and the Rum ultramafic complex, Scotland. Geol Mag 139:437–452

    Article  Google Scholar 

  • van Achterbergh E (2004) Geochemical fingerprints of mantle metasomatism. In, vol. Macquarie University, Sydney, p 223

  • Villemant B, Jaffrezic H, Joron J-L, Treuil M (1981) Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaine des Puys (Massif Central, France). Geochim Cosmochim Acta 45:1997–2016

    Article  Google Scholar 

  • Watson EB (1977) Partitioning of manganese between forsterite and silicate liquid. Geochim Cosmochim Acta 41:1363–1374

    Article  Google Scholar 

  • Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101

    Article  Google Scholar 

  • Wittig N, Pearson DG, Downes H, Baker JA (2009) The U, Th and Pb elemental and isotope compositions of mantle clinopyroxenes and heir grain boundary contamination derived from leaching and digestion experiments. Geochim Cosmochim Acta 73:469–488

    Article  Google Scholar 

  • Zhang ZC, Mao JW, Cai JH, Kusky TM, Zhou G, Yan SH, Zhao L (2008) Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos 105:379–395

    Article  Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Yu CM, Zhang HF, Pearson N, Zhang M (2007) Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta 71:5203–5225

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out during a sabbatical visit of SFF and DEJ at the Research School of Earth Sciences. Research on Ugandan volcanics is associated with the RIFTLINK research unit in Germany. We are grateful to J.C.M. de Hoog and an anonymous reviewer for comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Foley.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 62 kb)

Supplementary material 2 (XLS 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, S.F., Jacob, D.E. & O’Neill, H.S.C. Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contrib Mineral Petrol 162, 1–20 (2011). https://doi.org/10.1007/s00410-010-0579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0579-y

Keywords

Navigation