Skip to main content

Advertisement

Log in

The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Objectives

We aimed to compare the role of 18F-fluoride PET/CT, FDG PET/CT and 99mTc-MDP bone scans in the detection of bone metastases in patients with lung, breast and prostate carcinoma.

Methods

This was a prospective study including patients for staging (S) and restaging (R). Seventy-two patients (23S, 49R) with infiltrating ductal breast carcinoma, 49 patients (25S, 24R) with prostate adenocarcinoma and 30 patients (17S, 13R) with non-small-cell lung carcinoma (NSCLC), without known bone metastases but with high risk/clinical suspicion for the same, underwent a 99mTc-MDP bone scan, FDG PET/CT and 18F-fluoride PET/CT within 2 weeks. All scans were reviewed by two experienced nuclear medicine physicians, and the findings were correlated with MRI/thin-slice CT/skeletal survey. Histological verification was done wherever feasible.

Results

Sensitivity and negative predictive value (NPV) of 18F-fluoride PET/CT was 100 % in all three malignancies, while that of FDG PET/CT was 79 % and 73 % in NSCLC, 73 % and 80 % in breast cancer and 72 and 65 % in prostate cancer. Specificity and positive predictive value (PPV) of FDG PET/CT were 100 % in NSCLC and prostate and 97 % and 96 % in breast cancer. As compared to the 99mTc-MDP bone scan, all parameters were superior for 18F-fluoride PET/CT in prostate and breast cancer, but sensitivity and NPV were equal in NSCLC. The MDP bone scan had superior sensitivity and NPV compared to FDG PET/CT but had low specificity and PPV.

Conclusion

To rule out bone metastases in cases where there is a high index of suspicion, 18F-fluoride PET/CT is the most reliable investigation. 18F-fluoride PET/CT has the potential to replace the 99mTc-MDP bone scan for the detection of bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buckwalter JA, Brandser EA. Metastatic disease of the skeleton. Am Fam Physician. 1997;55(5):1761–8.

    PubMed  CAS  Google Scholar 

  2. Tritz DB, Doll DC, Ringenberg QS, Anderson S, Madsen R, Perry MC, et al. Bone marrow involvement in small cell lung cancer: clinical significance and correlation with routine laboratory variables. Cancer. 1989;63:763–6.

    Article  PubMed  CAS  Google Scholar 

  3. Bezwoda WR, Lewis D, Livini N. Bone marrow involvement in anaplastic small cell lung cancer: diagnosis, hematologic features, and prognostic implications. Cancer. 1986;58:1762–5.

    Article  PubMed  CAS  Google Scholar 

  4. Trillet V, Revel D, Combaret V, Favrot M, Loire R, Tabib A, et al. Bone marrow metastases in small cell lung cancer: detection with magnetic resonance imaging and monoclonal antibodies. Br J Cancer. 1989;60:83–8.

    Article  PubMed  CAS  Google Scholar 

  5. Perez DJ, Powles TJ, Milan J, Gazet JC, Ford HT, McCready VR, et al. Detection of breast carcinoma metastases in bone: relative merits of x-rays and skeletal scintigraphy. Lancet. 1983;2:613–6.

    Article  PubMed  CAS  Google Scholar 

  6. Rossing N, Munck O, Nielsen SP, Andersen KW. What do early bone scans tell about breast cancer patients? Eur J Cancer Clin Oncol. 1982;18:629–36.

    Article  PubMed  CAS  Google Scholar 

  7. Kunkler IH, Merrick MV. The value of non-staging skeletal scintigraphy in breast cancer. Clin Radiol. 1986;37:561–2.

    Article  PubMed  CAS  Google Scholar 

  8. Lee N, Fawaaz R, Olsson CA, Benson MC, Petrylak DP, Schiff PB, et al. Which patients with newly diagnosed prostate cancer need a radionuclide bone scan? An analysis based on 631 patients. Int J Radiat Oncol Biol Phys. 2000;48(5):1443–6.

    Article  PubMed  CAS  Google Scholar 

  9. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171:2122–7.

    Article  PubMed  Google Scholar 

  10. Padhani A, Husband J. Bone metastases. In: Husband JES, Reznek RH, editors. Imaging in oncology oxford. UK: Isis Medical Media Ltd.; 1998. p. 765–87.

    Google Scholar 

  11. Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med. 2001;45:53–64.

    PubMed  CAS  Google Scholar 

  12. Schirrmeister H, Guhlnamm A, Kotzerke J, Santjohanser C, Kühn T, Kreienberg R, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17:2381–9.

    PubMed  CAS  Google Scholar 

  13. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22:2942–53.

    Article  PubMed  Google Scholar 

  14. Muindi J, Coombes RC, Golding S, Powles TJ, Khan O, Husband J. The role of computed tomography in the detection of bone metastases in breast cancer patients. Br J Radiol. 1983;56:233–6.

    Article  PubMed  CAS  Google Scholar 

  15. Karnholz R, Sze G. Current imaging in spinal metastatic disease. Semin Oncol. 1991;18:158–69.

    Google Scholar 

  16. Vanel D, Dromain C, Tardivon A. MRI of bone marrow disorders. Eur Radiol. 2000;10:224–9.

    Article  PubMed  CAS  Google Scholar 

  17. Vogler JB 3rd, Murphy WA. Bone marrow imaging. Radiology. 1988;168:679–93.

    PubMed  Google Scholar 

  18. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.

    Article  PubMed  CAS  Google Scholar 

  19. Gates GF. SPECT bone scanning of the spine. Semin Nucl Med. 1998;28:78–94.

    Article  PubMed  CAS  Google Scholar 

  20. Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45:27–37.

    PubMed  CAS  Google Scholar 

  21. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231:305–32.

    Article  PubMed  Google Scholar 

  22. Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer. 2000;88:2927–33.

    Article  PubMed  CAS  Google Scholar 

  23. Franzius F, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27:1305–11.

    Article  PubMed  CAS  Google Scholar 

  24. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single and multi-field-of-view SPECT, 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  25. de Jong IJ, Breeuwsma A J, Prium J, van der Jagt EJ, Jager PL, Nijman RJ et al. 18F sodium fluoride PET for the detection of bone metastases in prostate cancer. In: Prostate Cancer Symposium. 2006 ASCO; 2006.

  26. Shreve PD, Grossmaný HB, Gross MD, Wahi RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-I[F-18]fluoro-d-glucose. Radiology. 1996;199:751–6.

    PubMed  CAS  Google Scholar 

  27. Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK, Coleman RE, et al. Staging non-small cell lung cancer with whole-body PET. Radiology. 1999;212:803–9.

    PubMed  CAS  Google Scholar 

  28. Pieterman RM, van Putten JWG, Meuzelaar JJ. Preoperative staging of non–small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000;343:254–61.

    Article  PubMed  CAS  Google Scholar 

  29. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348:2500–7.

    Article  PubMed  Google Scholar 

  30. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med. 1998;25:1244–7.

    Article  PubMed  CAS  Google Scholar 

  31. Cheran SK, Herndon JE 2nd, Patz EF Jr. Comparison of whole-body FDG-PET to bone scans for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer. 2004;44(3):317–25.

    Article  PubMed  Google Scholar 

  32. Schirrmeister H, Glatting G, Hetzel J, Nüssle K, Arslandemir C, Buck AK, et al. Prospective evaluation of clinical value of planar bone scan, SPECT and 18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–4.

    PubMed  CAS  Google Scholar 

  33. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, et al. Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med. 2004;45:272–8.

    PubMed  Google Scholar 

  34. Koichiro A, Asaki MS, Kuwabara Y, Koga H, Baba S, Hayashi K, et al. Comparison of 18FDG -PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med. 2005;19(7):575–9.

    Google Scholar 

  35. Gallowitsch HJ, Kresnik E, Gasser J, Kumnig G, Igerc I, Mikosch P, et al. 18F-fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol. 2003;38(5):250–6.

    PubMed  Google Scholar 

  36. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR. 2005;184:1266–73.

    Article  PubMed  Google Scholar 

  37. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.

    PubMed  CAS  Google Scholar 

  38. Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F, et al. 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32(3):168–76.

    Article  PubMed  Google Scholar 

  39. Ozülker T, Küçüköz Uzun A, Ozülker F, Ozpaçac T. Comparison of 18F-FDG-PET/CT with 99mTc-MDP bone scintigraphy for the detection of bone metastases in cancer patients. Nucl Med Commun. 2010;31(6):597–603.

  40. Krüger S, Buck AK, Mottaghy FM, Hasenkamp E, Pauls S, Schumann C, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36(11):1807–12.

    Article  PubMed  Google Scholar 

  41. Yen RF, Chen CY, Cheng MF, Wu YW, Shiau YC, Wu K, et al. The diagnostic and prognostic effectiveness of 18F-sodium fluoride PET-CT in detecting bone metastases for hepatocellular carcinoma patients. Nucl Med Commun. 2010;31(7):637–45.

    PubMed  CAS  Google Scholar 

  42. Iagaru A, Mittra E, Yaghoubi SS, Dick DW, Quon A, Goris ML, et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med. 2009;50(4):501–5.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishikant Avinash Damle.

About this article

Cite this article

Damle, N.A., Bal, C., Bandopadhyaya, G.P. et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31, 262–269 (2013). https://doi.org/10.1007/s11604-013-0179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-013-0179-7

Keywords

Navigation