Skip to main content
Log in

Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lipid production by the red yeast Rhodosporidium toruloides was explored under nutrient limitation. To determine the compositional profiles of R. toruloides cells, samples were prepared using a continuous cultivation process under nutrient limitation and analyzed via several methods, including Fourier transform infrared spectroscopy and elemental analysis. Under nitrogen limitation, as the dilution rate increased, the cellular lipid content decreased but the carbohydrate and protein contents increased. Under carbon limitation, the cellular lipid, protein, and carbohydrate contents remained relatively constant at the different dilution rates. Moreover, the cellular elemental composition was essentially identical under nitrogen and carbon limitation at a high dilution rate of 0.20 h−1. We also analyzed the consumed carbon to nitrogen (C/N) under different nutrition conditions. The results indicated that the consumed C/N had a major influence on cell metabolism and product formation, which contributed to our understanding of the physiological characteristics of R. toruloides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez RM, Rodriguez B, Romano JM, Diaz AO, Gomez E, Miro D, Navarro L, Saura G, Garcia JL (1992) Lipid accumulation in Rhodotorula glutinis on sugar cane molasses in single-stage continuous culture. World J Microb Biot 8(2):214–215. doi:10.1007/Bf01195853

    Article  CAS  Google Scholar 

  • Ami D, Posteri R, Mereghetti P, Porro D, Doglia SM, Branduardi P (2014) Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts. Biotechnol Biofuels 7(1):12. doi:10.1186/1754-6834-7-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. doi:10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  • Carnicer M, Baumann K, Toplitz I, Sanchez-Ferrando F, Mattanovich D, Ferrer P, Albiol J (2009) Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Factories 8:65. doi:10.1186/1475-2859-8-65

    Article  Google Scholar 

  • Challagulla V, Walsh KB, Subedi P (2013) Biomass and total lipid content assessment of microalgal cultures using near and short wave infrared spectroscopy. Bioenerg Res 7(1):306–318. doi:10.1007/s12155-013-9373-9

    Article  Google Scholar 

  • Choi S, Ryu DD, Rhee J (1982) Production of microbial lipid: effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnol Bioeng 24(5):1165–1172. doi:10.1002/bit.260240513

    Article  CAS  PubMed  Google Scholar 

  • Coat R, Montalescot V, León ES, Kucma D, Perrier C, Jubeau S, Thouand G, Legrand J, Pruvost J, Gonçalves O (2014) Unravelling the matrix effect of fresh sampled cells for in vivo unbiased FTIR determination of the absolute concentration of total lipid content of microalgae. Bioproc Biosyst Eng 37(11):2175–2187. doi:10.1007/s00449-014-1194-5

    Article  CAS  Google Scholar 

  • Dekkers JGJ, Dekok HE, Roels JA (1981) Energetics of Saccharomyces cerevisiae CBS 426: comparison of anaerobic and aerobic glucose limitation. Biotechnol Bioeng 23(5):1023–1035. doi:10.1002/bit.260230510

    Article  CAS  Google Scholar 

  • Dostalek M (1986) Production of lipid from starch by a nitrogen controlled mixed culture of Saccharomycopsis fibuliger and Rhodosporidium toruloides. Appl Microbiol Biotechnol 24(1):19–23. doi:10.1007/BF00266279

    Article  CAS  Google Scholar 

  • Evans CT, Ratledge C (1984) Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14. J Gen Microbiol 130:1705–1710. doi:10.1099/00221287-130-7-1705

    CAS  Google Scholar 

  • Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2006) Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl Microbiol Biotechnol 73(3):676–683. doi:10.1007/s00253-006-0506-3

    Article  CAS  PubMed  Google Scholar 

  • Floetenmeyer MD, Glatz BA, Hammond EG (1985) Continuous culture fermentation of whey permeate to produce microbial oil. J Dairy Sci 68(3):633–637. doi:10.3168/jds.S0022-0302(85)80869-9

    Article  CAS  Google Scholar 

  • Fonseca GG, Gombert AK, Heinzle E, Wittmann C (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res 7(3):422–435. doi:10.1111/j.1567-1364.2006.00192.x

    Article  CAS  PubMed  Google Scholar 

  • Ganuza E, Izquierdo MS (2007) Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Appl Microbiol Biotechnol 76(5):985–990. doi:10.1007/s00253-007-1019-4

    Article  CAS  PubMed  Google Scholar 

  • Gill CO, Hall MJ, Ratledge C (1977) Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Appl Environ Microb 33(2):231–239

    CAS  Google Scholar 

  • Herbert D, Phipps P, Strange R (1971) Methods in microbiology. In: Norris JR, Ribbons DW (eds) Chemical analysis of microbial cells. Vol 5(B). Elsevier, London, pp 209–344

    Google Scholar 

  • Jebsen C, Norici A, Wagner H, Palmucci M, Giordano M, Wilhelm C (2012) FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiol Plant 146(4):427–438. doi:10.1111/j.1399-3054.2012.01636.x

    Article  CAS  PubMed  Google Scholar 

  • Lange HC, Heijnen JJ (2001) Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75(3):334–344. doi:10.1002/bit.10054

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Chen L, Cao B, Chen WN (2016) Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture. Appl Microbiol Biotechnol 100(2):869–877. doi:10.1007/s00253-015-7102-3

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol 41(3):312–317. doi:10.1016/j.enzmictec.2007.02.008

    Article  Google Scholar 

  • Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biot 82(8):775–780. doi:10.1002/jctb.1744

    Article  CAS  Google Scholar 

  • Macris BJ, Kokke R (1978) Continuous fermentation to produce fungal protein—effect of growth-rate on biomass yield and chemical composition of Fusarium moniliforme. Biotechnol Bioeng 20(7):1027–1035. doi:10.1002/bit.260200705

    Article  CAS  Google Scholar 

  • Matsakas L, Bonturi N, Miranda EA, Rova U, Christakopoulos P (2015) High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides. Biotechnol Biofuels 8(1):6. doi:10.1186/s13068-014-0190-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Meesters PAEP, Huijberts GNM, Eggink G (1996) High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45(5):575–579. doi:10.1007/s002530050731

    Article  CAS  Google Scholar 

  • Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5. doi:10.1016/j.renene.2008.04.014

    Article  Google Scholar 

  • Movasaghi Z, Rehman S, Rehman IU (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrpsc Rev 43(2):134–179. doi:10.1080/05704920701829043

    Article  CAS  Google Scholar 

  • Novick A, Szilard L (1950) Description of the chemostat. Science 112(2920):715–716

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud J-M, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Tech 111(12):1221–1232. doi:10.1002/ejlt.200900055

    Article  CAS  Google Scholar 

  • Pinchetti JLG, Fernandez ED, Diez PM, Reina GG (1998) Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). J Appl Phycol 10(4):383–389. doi:10.1023/A:1008008912991

    Article  CAS  Google Scholar 

  • Pitt DE, Bull AT (1982) Influence of culture conditions on the physiology and composition of Trichoderma aureoviride. J Gen Microbiol 128:1517–1527. doi:10.1099/00221287-128-7-1517

    CAS  Google Scholar 

  • Pleissner D, Eriksen NT (2012) Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnol Bioeng 109(8):2005–2016. doi:10.1002/Bit.24470

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Gong Z, Yang X, Jin G, Bai F, Zhao ZK (2013) Kinetics of continuous cultivation of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol 168(1):85–89. doi:10.1016/j.jbiotec.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Yang X, Gong Z, Jin G, Zhao Z (2016) Prediction of lipid yield and substrate distribution based on consumed C/N ratio. CIESC Journal 67(1):324–330. doi:10.11949/j.issn.0438-1157.20150454

    CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. Laboratory analytical procedure (LAP). National Renewable Energy Laboratory, http://www.nrel.gov/docs/gen/fy08/42622.pdf

  • Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic press, SanDiego

    Google Scholar 

  • Tang H, Chen M, Ng KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109(10):2468–2474. doi:10.1002/bit.24516

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Dunker S, Liu Z, Wilhelm C (2013) Subcommunity FTIR-spectroscopy to determine physiological cell states. Curr Opin Biotechnol 24(1):88–94. doi:10.1016/j.copbio.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  • Wiebe MG, Koivuranta K, Penttila M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12:26. doi:10.1186/1472-6750-12-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101(15):6124–6129. doi:10.1016/j.biortech.2010.02.111

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102(2):1803–1807. doi:10.1016/j.biortech.2010.09.033

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV (2016) Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 113(5):1056–1066. doi:10.1002/bit.25864

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112. doi:10.1038/ncomms2112

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAD02B02), State Key Laboratory of Motor Vehicle Biofuel Technology (KFKT2014009), and National Natural Science Foundation of China (21325627) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This research work does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Zhang, X., Gong, Z. et al. Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 101, 3801–3809 (2017). https://doi.org/10.1007/s00253-017-8157-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8157-0

Keywords

Navigation