Skip to main content
Log in

Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Changes in lipid composition of the oleaginous fungus Cunninghamella echinulata were monitored during growth. Lipid fractions and individual lipid classes varied in amount, relative proportions, and fatty acid profile depending on the developmental stage. Neutral lipids (N), comprised mainly of triacylglycerol, were accumulated in the fungal mycelium during both the late exponential and the stationary growth phases with a concomitant decrease in the amount of polar lipids. While fatty acid composition of N fraction remained almost constant, individual N classes showed a noticeable alteration in γ-linolenic acid (GLA) concentration. The glycolipid plus sphingolipid (G+S) fraction consisted mainly of monoglycosylglycerol and diglycosylglycerol. The sugar composition of G+S fraction was analyzed and showed a partial replacement of galactose for glucose as growth proceeded. Phospholipid (P) major classes were phosphatidylcholine (PC) and phosphatidylethanolamine, followed by phosphatidylinositol, phosphatidylserine, and diphosphatidylglycerol. P fatty acid composition showed significant changes with time, resulting in a considerable drop in the unsaturation index of this fraction. While in mid exponential growth phase, all P classes contained more than 20% w/w GLA of total fatty acids, and their concentration decreased to 12–17% w/w, except for the PC class where GLA concentration remained at high levels (e.g., more than 20% w/w). The constant level of GLA in PC at all growth phases suggests that PC was the major source of GLA. Sterol analysis showed that their concentration increased during growth, whereas ergosterol was the major component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AFNOR (1984) Recueil des normes francaises des corps gras, grains oléagineux et produits dérives. In: Association Française pour Normalisation. Paris, p 95

  • Aggelis G, Pina M, Ratomahenina R, Arnaud A, Graille J, Galzy P, Martin P, Peraud J (1987) Production d’huiles riches en acide gamma linolénique par diverses souches de Phycomycètes. Oléagineux 42:379–386

    CAS  Google Scholar 

  • Aggelis G, Pina M, Graille J (1990) Localisation de l’acide gamma linolénique dans les mycélium et dans les spores chez deux mucorales. Oléagineux 45:229–232

    CAS  Google Scholar 

  • Aki T, Matsumoto Y, Morinaga T, Kawamoto S, Shigeta S, Ono K, Suzuki O (1998) Lipid composition of a newly isolated polyunsaturated fatty acid-producing fungus, Achlya sp. ma-2801. J Ferment Bioeng 86:504–507

    Article  CAS  Google Scholar 

  • Barrero AF, Enrique Oltra J, Robinson J, Burke PV, Jimenez D, Oliver E (2002) Sterols in erg mutants of Phycomyces: metabolic pathways and physiological effects. Steroids 67:403–409

    Article  CAS  Google Scholar 

  • Bartlett K, Mercer EI (1974) Variation in the levels and composition of the sterols and sterol esters of Phycomyces blakesleeanus with age of culture. Phytochemistry 13:1115–1121

    Article  CAS  Google Scholar 

  • Batrakov S, Konova I, Sheichenko V, Esipov S, Galanina L, Istratova L, Sergeeva Y (2004) Lipids of the zygomycete Absidia corymbifera F-965. Phytochemistry 65:1239–1246

    Article  CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  Google Scholar 

  • Certik M, Shimizu S (2000) Kinetic analysis of oil biosynthesis by an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol 54:224–230

    Article  CAS  Google Scholar 

  • Certik M, Shimizu S (2003) Isolation and lipid analyses of subcellular fractions from the arachidonic acid producing fungus Mortierella alpina. Biologia (Bratisl) 58:1101–1110

    CAS  Google Scholar 

  • Chen H, Chang C (1996) Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnol Prog 12:338–341

    Article  CAS  Google Scholar 

  • Chen H, Liu T (1997) Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840. Enzyme Microb Technol 21:137–141

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 199:833–841

    Google Scholar 

  • Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G (2002) Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl Microbiol Biotechnol 58:303–307

    Article  CAS  Google Scholar 

  • Henderson J, Tocher D (1992) Thin-layer chromatography. In: Hamilton R, Hamilton S (eds) Lipid analysis. IRL Press, Oxford, pp 65–111

    Google Scholar 

  • Horrobin DF (1992) Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 31:163–194

    Article  CAS  Google Scholar 

  • Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G (2001) Lipid and γ-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J Am Oil Chem Soc 78:341–346

    CAS  Google Scholar 

  • Kenny F, Pinder S, Ellis I, Gee J, Nicholson R, Bryce R, Robertson J (2000) Gamma linolenic acid with tamoxifen as primary therapy in breast cancer. Int J Cancer 85:643–648

    Article  CAS  Google Scholar 

  • Latge J, De Bievre C (1980) Lipid composition of Entomophthora obscura Hall & Dunn. J Gen Microbiol 121:151–158

    CAS  Google Scholar 

  • Loeffler RST, Hayes AL (1990) Sterols of the plant pathogenic fungi Botrytis cinerea and Pyrenophora teres. Phytochemistry 29:3423–3425

    Article  CAS  Google Scholar 

  • Losel D (1989a) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 699–794

    Google Scholar 

  • Losel D (1989b) Functions of lipids: specialized roles in fungi and algae. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic, London, pp 367–438

    Google Scholar 

  • Mercer EI, Bartlett K (1974) Sterol esters of Phycomyces blakesleeanus. Phytochemistry 13:1099–1105

    Article  CAS  Google Scholar 

  • Mills G, Cantino E (1974) Lipid composition of the zoospores of Blastocladiella emersonii. J Bacteriol 118:192–201

    CAS  Google Scholar 

  • Mlickova K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud J (2004) Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70:3918–3924

    Article  CAS  Google Scholar 

  • Mysyakina IS, Funtikova NS, Medvedev FA (2002) Sterol composition of the arthrospores and mycelium of the fungus Mucor hiemalis. Microbiology (Moscow) 71:404–409

    CAS  Google Scholar 

  • Nes WD, Xu S, Haddon WF (1989) Evidence for similarities and differences in the biosynthesis of fungal sterols. Steroids 53:533–558

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49

    Article  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  CAS  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:124–1304

    Article  CAS  Google Scholar 

  • Ratledge C, Wynn J (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  Google Scholar 

  • Sajbidor J, Certík M, Grego J (1994) Lipid analysis of baker’s yeast. J Chromatogr 665:191–195

    Article  CAS  Google Scholar 

  • Safe S (1973) The effect of environment on the free and hydrosoluble sterols of Mucor rouxii. Biochim Biophys Acta 326:471–475

    CAS  Google Scholar 

  • Vaskovsky VE, Latyshev NA (1975) Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms. J Chromatogr 115:246–249

    Article  CAS  Google Scholar 

  • Volkman (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506

    CAS  Google Scholar 

  • Waltermann M, Steinbuchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  CAS  Google Scholar 

  • Weete J, Gandhi S (1997) Sterols of the Phylum Zygomycota:Phylogenetic implications. Lipids 32:1309–1316

    Article  CAS  Google Scholar 

  • Weete J, Shewmaker F, Gandhi S (1998) γ-Linolenic acid in zygomycetous fungi: Syzygites megalocarpus. J Am Oil Chem Soc 75:1367–1372

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the bilateral project between Greece and Slovakia: “Biotechnological valorization of agro-industrial materials by application of oleaginous microorganisms producing biologically active lipids”. The Greek State Scholarship Foundation is acknowledged for the doctoral fellowship of Stylianos Fakas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Aggelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakas, S., Papanikolaou, S., Galiotou-Panayotou, M. et al. Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl Microbiol Biotechnol 73, 676–683 (2006). https://doi.org/10.1007/s00253-006-0506-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0506-3

Keywords

Navigation