Skip to main content

Advertisement

Log in

Application of organic acids for plant protection against phytopathogens

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akimoto K, Higashiyama K, Shimizu A (2000) Production of arachidonic acid-containing lipid and dihomo-gamma-linolenic acid-containing lipid. Patent 2000069987

  • Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ (2009) Glycerol valorization: new biotechnological routes. Food Bioprod Proc 87:179–186

    Article  CAS  Google Scholar 

  • Aurich A, Förster A, Mauesberger S, Barth G, Stottmeister U (2003) Citric acid production from renewable resources by Yarrowia lipolytica. Biotechn Adv 21:454–455

    Google Scholar 

  • Aurich A, Specht R, Müller RA, Stottmeister U, Yovkova V, Otto C, Holz M, Barth G, Heretsch P, Thomas FA, Sicker D, Giannis A (2012) Microbiologically produced carboxylic acids used as building blocks in organic synthesis. In: Wang X, Chen J, Quinn P (eds) Reprogramming microbial metabolic pathways. Springer-Dortrecht-Heidelberg, New York, pp 391–424

    Chapter  Google Scholar 

  • Barclay WR (2007) Method for production of arachidonic acid. US Patent Application 2007002050

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Non conventional yeasts in biotechnology: a handbook. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Bostock RM, Kuc JA, Laine RA (1981) Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Sci 212:67–69. doi:10.1126/science.212.4490.67

    Article  CAS  Google Scholar 

  • Cao Y, Lin W, Xu X, Zhang H, Wang J, Xian M (2014) Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnol Biofuels 7:59. doi:10.1186/1754-6834-7-59

    Article  PubMed  PubMed Central  Google Scholar 

  • Carole TM, Pellegrino J, Paster MD (2004) Opportunities in the industrial biobased products industry. Appl Biochem Biotechnol 115:871–885. doi:10.1007/978-1-59259-837-3_71

    Article  Google Scholar 

  • Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545. doi:10.1016/j.procbio.2007.08.008

    Article  CAS  Google Scholar 

  • Choi D, Ward BL, Bostock RM (1992) Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell 4:1333–1344. doi:10.1105/tpc.4.10.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedyukhina EG, Chistyakova TI, Vainshtein MB (2011) Biosynthesis of arachidonic acid by micromycetes (review). Appl Biochem Microbiol 47:109–117. doi:10.1134/S0003683811020037

    Article  CAS  Google Scholar 

  • Dedyukhina EG, Chistyakova TI, Kamzolova SV, Vinter MV, Vainshtein MB (2012) Arachidonic acid synthesis by glycerol-grown Mortierella alpina. Eur J Lipid Sci Technol 114(7):833–841. doi:10.1002/ejlt.201100360

    Article  CAS  Google Scholar 

  • Dedyukhina EG, Kamzolova SV, Vainshtein MB (2014) Arachidonic acid as an elicitor of the plant defense response to phytopathogens (review). Chem Biol Technol Agric 1:18 . doi:10.1186/s40538-014-0018-9 http://www.chembioagro.com/content/1/1/18

    Article  Google Scholar 

  • Dedyukhina EG, Chistyakova TI, Mironov AA, Kamzolova SV, Minkevich IG, Vainshtein MB (2015) The effect of pH, aeration, and temperature on arachidonic acid synthesis by Mortierella alpina. Appl Biochem Microbiol 5:242–248. doi:10.1134/S0003683815020040

    Article  Google Scholar 

  • Dedyukhina EG, Chistyakova TI, Kamzolova SV, Mironov AA, Morgunov IG, Vainshtein MB (2016) The study of the effect of the arachidonic acid preparation from mycelium of Mortierella hygrophila on resistance of tomatoes and potato to phytopathogens. Contribution of Microbiology and Virology to Modern Bioindustry. Intern Sci Pract Conf Almaty 213–216 (in Russian)

  • Dyal SD, Narine SS (2005) Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Intern 38:445–467. doi:10.1016/j.foodres.2004.11.002

    Article  CAS  Google Scholar 

  • Eroshin VK, Dedyukhina EG (2002) Effect of lipids from Mortierella hygrophila on plant resistance to phytopathogens. World J Microbiol Biotechnol 18:165–167. doi:10.1023/A:1014429527591

    Article  CAS  Google Scholar 

  • Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:1171–1175. doi:10.1016/S0032-9592(00)00151-5

    Article  CAS  Google Scholar 

  • Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418–425. doi:10.1007/s10438-005-0076-7

    Article  CAS  Google Scholar 

  • Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007a) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77:861–869. doi:10.1007/s00253-007-1205-4

    Article  PubMed  Google Scholar 

  • Förster A, Aurich A, Mauersberger S, Barth G (2007b) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75:1409–1417. doi:10.1007/s00253-007-0958-0

    Article  PubMed  Google Scholar 

  • Fu GY, Lu Y, Chi Z, Liu GL, Zhao SF, Jiang H, Chi ZM (2016) Cloning and characterization of a pyruvate carboxylase gene from Penicillium rubens and overexpression of the gene in the yeast Yarrowia lipolytica for enhanced citric acid production. Mar Biotechnol 18(1):1–14. doi:10.1007/s10126-015-9665-5

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Li C, Kang L, Hang B, Yan M, Li S, Jin H, Lee AW, Cho SS (2014) A subchronic toxicity study, preceded by an in utero exposure phase, with refined arachidonic acid-rich oil (RAO) derived from Mortierella alpina XM027 in rats. Regul Toxicol Pharmacol 70(3):696–703. doi:10.1016/j.yrtph.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Yang X, Wang H, Rivero CP, Li C, Cui Z, Qi Q, Lin CS (2016) Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol Biofuels 9(1):179. doi:10.1186/s13068-016-0597-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258. doi:10.1016/j.tibtech.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  • Good DW, Droniuk R, Lawford RG, Fein JE (1985) Isolation and characterization of a Saccharomycopsis lipolytica mutant showing increased production of citric acid from canola oil. Can J Microbiol 31:436–440. doi:10.1139/m85-081

    Article  CAS  Google Scholar 

  • Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PW, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206. doi:10.3109/1040841X.2013.770386

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Chen H, Du K, Huang X, Song Y, Gu Z, Wang L, Zhang H, Chen W, Chen YQ (2014) Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina. Biotechnol Lett 36:1827–1834. doi:10.1007/s10529-014-1546-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao G, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2015) Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source. Microb Cell Factories 14:205. doi:10.1186/s12934-015-0392-4

    Article  Google Scholar 

  • Hempenius RA, Van Delft JM, Prinsen M, Lina BA (1997) Preliminary safety assessment of an arachidonic acid-enriched oil derived from Mortierella alpina: summary of toxicological data. Food Chem Technol 35:573–581. doi:10.1016/S0278-6915(97)00025-2

    Article  CAS  Google Scholar 

  • Higashiyama K (2007) Method for polyunsaturated fatty acid production using novel cell preservation technique. Patent EP1776450 (A1)

  • Higashiyama K, Fujikawa S, Park EY, Shimizu S (2002) Production of arachidonic acid by Mortierella Fungi. Biotechnol Bioproc Eng 7:252–262. doi:10.1007/BF00252518

    Article  CAS  Google Scholar 

  • Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G (2011) Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89:1519–1526. doi:10.1007/s00253-010-2957-9

    Article  CAS  PubMed  Google Scholar 

  • Hou CT (2008) Production of arachidonic acid and dihomo-γ-linolenic acid from glycerol by oil-producing filamentous fungi, Morterella in the ARS culture collection. J Ind Microbiol Biotechnol 35:501–506. doi:10.1007/s10295-008-0308-y

    Article  CAS  PubMed  Google Scholar 

  • Huang CB, George B, Ebersole JL (2010) Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch Oral Biol Aug 55(8):555–360. doi:10.1016/j.archoralbio.2010.05.009

    Article  CAS  Google Scholar 

  • Inn YW, Kim JJ, Kim HJ, Oh SW (2013) Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. J Food Safety 33:79–85. doi:10.1111/jfs.12025

    Article  Google Scholar 

  • Ivanyuk VG, Chalova LI, Yurganova LA, Ozeretskovskaya OL, Karavaeva KA (1990) Immunization of tomatoes by biogenic inductors of protective reactions. Vestn S-H Nauki (Moscow) no. ,нет тома :144–146 (in Russian)

  • Ji XJ, Zhang AH, Nie ZK, Wu WJ, Ren LJ, Huang H (2014a) Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. Bioresour Technol 170:356–380. doi:10.1016/j.biortech.2014.07.098

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Ren LJ, Nie ZK, Huang H, Ouyang PK (2014b) Fungal arachidonic acid-rich oil: research, development and industrialization. Crit Rev Biotechnol 34:197–214. doi:10.3109/07388551.2013.778229

    Article  CAS  PubMed  Google Scholar 

  • Jin MJ, Huang H, Xiao AH, Zhang K, Liu X, Li S, Peng C (2008) A novel two-step fermentation process for improved arachidonic acid production by Mortierella alpina. Biotechnol Lett 30:1087–1091. doi:10.1007/s10529-008-9661-1

    Article  CAS  PubMed  Google Scholar 

  • Jost B, Holz M, Aurich A, Barth G, Bley T, Müller RA (2015) The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica. Appl Microbiol Biotechnol 99(4):1675–1686. doi:10.1007/s00253-014-6252-z

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2015) Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(1):201–210. doi:10.1007/s00253-014-6083-y

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Morgunov IG (2013) α-Ketoglutaric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97:5517–5525. doi:10.1007/s00253-013-4772-6

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Shishkanova NV, Morgunov IG, Finogenova TV (2003) Oxygen requirements for growth and citric acid production of Yarrowia lipolytica. FEMS Yeast Res 3:217–222. doi:10.1016/S1567-1356(02)00188-5

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Yusupova AI, Vinokurova NG, Fedotcheva NI, Kondrashova MN, Finogenova TV, Morgunov IG (2009) Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol. Appl Microbiol Biotechnol 83:1027–1034. doi:10.1007/s00253-009-1948-1

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Lunina JN, Morgunov IG (2011) Biochemistry of citric acid production from rapeseed oil by Yarrowia lipolytica yeast. JAOCS 88:1965–1976. doi:10.1007/s11746-011-1954-1

    CAS  Google Scholar 

  • Kamzolova SV, Vinokurova NG, Yusupova AI, Morgunov IG (2012a) Succinic acid production from n-alkanes. Eng Life Sci 12:560–566. doi:10.1002/elsc.201100241

    Article  CAS  Google Scholar 

  • Kamzolova SV, Chiglintseva MN, Lunina JN, Morgunov IG (2012b) α-Ketoglutaric acid production by Yarrowia lipolytica and its regulation. Appl Microbiol Biotechnol 96:783–791. doi:10.1007/s00253-012-4222-x

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Vinokurova NG, Shemshura ON, Bekmakhanova NE, Lunina JN, Samoilenko VA, Morgunov IG (2014a) The production of succinic acid by yeast Yarrowia lipolytica through a two-step process. Appl Microbiol Biotechnol V. 98. № 18. – P. 7959–7969. doi:10.1007/s00253-014-5887-0

  • Kamzolova SV, Vinokurova NG, Dedyukhina EG, Samoilenko VA, Lunina JN, Mironov AA, Allayarov RK, Morgunov IG (2014b) The peculiarities of succinic acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 98:4149–4157. doi:10.1007/s00253-014-5585-y

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Samoilenko VA, Shemshura ON, Bekmakhanova NE, Lunina JN, Morgunov IG (2016) The method of α-ketoglutaric acid production from ethanol by yeast Yarrowia lipolytica. Intern Sci Pract Conf Almaty 213–216. (in Russian)

  • Kang HC, Park YH, Go SJ (2003) Growth inhibition of a phytopathogenic fungus, Colletotrichum species by acetic acid. Microbiol Res 158:321–326. doi:10.1078/0944-5013-00211

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda P, Coleman R, Jensen S, Beatty P, Tewari ОЗ, Yang J (2013) Biocontrol agent and fungicide for blackleg disease. CA Patent 2238289C

  • Kolouchova I, Sigler K, Schreiberova O, Masak J, Rezanka T (2015) New yeast-based approaches in production of palmitoleic acid. Bioresour Technol 192:726–734. doi:10.1016/j.biortech.2015.06.048

    Article  CAS  PubMed  Google Scholar 

  • Kolouchova I, Mat’atkova O, Sigler K, Masak J, Rezanka T (2016) Production of palmitoleic and linoleic acid in oleaginous and nonoleaginous yeast biomass. Inter J Anal Chem. doi:10.1155/2016/7583684

    Google Scholar 

  • Kondrashova MN (2002) Hormone-similar action of succinic acid (in Russian). Vopr Biol Med Pharmac Chem 1:7–15

    Google Scholar 

  • Konova IV, Kochkina GA, Galanina LA (2005) The prevalence of cis-9-hexadecenoic acid as a specific feature of the fatty acid profile of Zygomycetes from the order Kickxellales. Microbiology (Moscow, Interperiodica) 74:99–103. doi:10.1007/s11021-005-0033-8

    CAS  Google Scholar 

  • Kyle DJ (2007) Arachidonic acid and methods for production and use thereof. Patent JP2007319161 (A)

  • Ledesma-Amaro R, Lazar Z, Rakicka M, Guo Z, Fouchard F, Coq AC, Nicaud JM (2016) Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124. doi:10.1016/j.ymben.07.001

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang H, Fu L, An X, Zhang B, Li Y, Chen Z, Zheng W, Yi L, Zheng T (2014) A novel algicide: evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense. PLoS 9(3):e91201. doi:10.1371/journal.pone.0091201

    Article  Google Scholar 

  • Liu X, Lv J, Zhang T, Deng Y (2015) Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation. Prep Biochem Biotechnol 45:825–835

  • Maldonado P, Desmarquest JP, Gaillardin C, Binet D (1973) Process for getting diploid Candida lipolytica strains for alpha-ketoglutarate fermentation. Patent US 3930946

  • Mohamed NA, Mohamed RR, Seoudi RS (2014) Synthesis and characterization of some novel antimicrobial thiosemicarbazone O-carboxymethyl chitosan derivatives. Int J Biol Macromol 63:163–169

  • Morgunov IG, Kamzolova SV (2015) Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry. Appl Microbiol Biotechnol Aug 99(15):6443–6450. doi:10.1007/s00253-015-6558-5

    Article  CAS  Google Scholar 

  • Nie ZK, Deng ZT, Zhang AH, Ji ZJ, Huang H (2014a) Efficient arachidonic acid-rich oil production by Mortierella alpina through a three-stage fermentation strategy. Bioprocess Biosyst Eng 37:505–511. doi:10.1007/s00449-013-1015-2

    Article  CAS  PubMed  Google Scholar 

  • Nie ZK, Ji XJ, Shang JS, Zhang AH, Ren LJ, Huang H (2014b) Arachidonic acid-rich oil production by Mortierella alpina with different gas distributors. Bioprocess Biosyst Eng 37(6):1127–1132. doi:10.1007/s00449-013-1104-2

    Article  CAS  PubMed  Google Scholar 

  • Nisha A, Muthukumar SP, Venkateswaran G (2009) Safety evaluation of arachidonic acid rich Mortierella alpina biomass in albino rats—a subchronic study. Regulatory Toxicol Pharmacol 53:186–194. doi:10.1016/j.yrtph.2009.01.002

    Article  CAS  Google Scholar 

  • Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92:689–695. doi:10.1007/s00253-011-3597-4

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase genes in Yarrowia lipolytica. Appl Microbiol Biotechnol 95:905–917. doi:10.1007/s00253-012-4085-1

    Article  CAS  PubMed  Google Scholar 

  • Ozeretskovskaya OL (1994) Induction of plant resistance with biogenic elicitors of phytopathogens. Appl Biochem Microbiol 30(3):265–276

    Google Scholar 

  • Ozeretskovskaya OL, Vasyukova NI (2002) The use of elicitors for defense of agricultural plants demands a care. Appl Biochem Microbiol (English translation from Prikl Biokhim Mikrobiol) 38:322–325

    Google Scholar 

  • Ozeretskovskaya OL, Il’inskaya LI, Vasyukova NI (1994) Mechanisms of induction of the plant systemic resistance to diseases by elicioirs. Physiol Plants 41:626–633 (In Russian)

    Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl-esters) manufacturing process: production of 1,3-propanediol, citric acid and single oil. Biomass Bioeng 32:60–71. doi:10.1016/j.biombioe.2007.06.007

    Article  CAS  Google Scholar 

  • Preisig CL, Kuc JA (1985) Arachidonic acid-related elicitors of the hypersensitive response in potato and enhancement of their activities by glucans from Phytophthora infestans (Mont) deBary. Arch Biochem Biophys 236:379–389. doi:10.1016/0003-9861(85)90638-1

    Article  CAS  PubMed  Google Scholar 

  • Preisig CL, Kuc JA (1988) Metabolism by potato tuber of arachidonic acid, an elicitor of hypersensitive resistance. Physiol Mol Plant Pathol 32:77–88. doi:10.1016/S0885-5765(88)80007-9

    Article  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745. doi:10.1038/nbt972

    Article  CAS  PubMed  Google Scholar 

  • Rakicka M, Lazar Z, Rywinska A, Rymowicz W (2016) Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using expressing inulinase. Chem Pap 70:1452–1459. doi:10.1515/chempap-2016-0085

    Article  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815. doi:10.1016/j.biochi.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  • Rymowicz W, Fatykhova AR, Kamzolova SV, Rywińska A, Morgunov IG (2010) Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol 87:971–979. doi:10.1007/s00253-010-2561-z

    Article  CAS  PubMed  Google Scholar 

  • Rywińska A, Rymowicz W (2010) High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. J Ind Microbiol Biotechnol May 37(5):431–435. doi:10.1007/s10295-009-0687-8

    Article  Google Scholar 

  • Rywińska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W (2013) Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 48:148–166. doi:10.1016/j.biombioe.2012.11.021

    Article  Google Scholar 

  • Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, Pye MF, Mohamed ME, Lazarus CM, Bostock RM, Dehesh K (2010) Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193–3205. doi:10.1105/tpc.110.073858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shemshura ON, Bekmakhanova NE, Mazunina MN, Meyer SL, Rice CP, Masler EP (2016) Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus. FEMS Microbiol Lett 363(5):fnw026. doi:10.1093/femsle/fnw026

    Article  PubMed  Google Scholar 

  • Shinmen Y, Shimizu S, Akimoto K, Kawashima H, Yamada H (1989) Production of arachidonic acid by Mortierella fungi. Selection of a potent producer and optimization of culture conditions for large-scale production. Appl Microbiol Biotechnol 31:11–16. doi:10.1007/BF00252518

    Article  CAS  Google Scholar 

  • Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D (2005) White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotech 32:651–664. doi:10.1007/s10295-005-0254-x

    Article  CAS  Google Scholar 

  • Streekstra H (1997) On the safety of Mortierella alpina for the production of food ingredients, such as arachidonic acid. J Biotechnol 56:153–165. doi:10.1016/S0168-1656(97)00109-0

    Article  CAS  PubMed  Google Scholar 

  • Streekstra H, Brocken PJM (2008) Preparation of microbial oil. US Patent 7,470,527

  • Streekstra H, Brocken PJM (2009) Preparation of microbial oil. US Patent 2009003342 (A1)

  • Takeno S, Sakuradani E, Tomi A, Ochiai MI, Kawashima H, Ashikari T, Shimizu S (2005a) Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Δ12-desaturase gene expression. Appl Environ Microbiol 71:5124–5128. doi:10.1128/AEM.71.9.5124-5128.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005b) Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids 40:25–30. doi:10.1007/s11745-005-1356-6

    Article  CAS  PubMed  Google Scholar 

  • Tan MJ, Chen X, Wang YK, Liu GL, Chi ZM (2016) Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst Eng 39(8):1289–1296. doi:10.1007/s00449-016-1607-8

    Article  CAS  PubMed  Google Scholar 

  • Tjamos EC, Kucacute JA (1982) Inhibition of steroid glycoalkaloid accumulation by arachidonic and eicosapentaenoic acids in potato. Science 217:542–544. doi:10.1126/science.217.4559.542

    Article  CAS  PubMed  Google Scholar 

  • Vasyukova NI, Gerasimova NG, Chalenko GI, Ozeretskovskaya OL (2012) Elicitor activity of chitosan and arachidonic acid: their similarity and distinction. Appl Biochem Microbiol 48:109–116. doi:10.1134/S0003683812010188

    Article  Google Scholar 

  • Vereshchagin AL, Kropotkin VV, Khmeleva AN (2010) On the mechanism of the growth stimulatory effect of ultra low doses of natural organic acids. Bull Altai State Agrarian Univ 1(63):46–48

    Google Scholar 

  • Wang C, Xing J, Chin CK, Peters JS (2002) Fatty acids with certain structural characteristics are potent inhibitors of germination and inducers of cell death of powdery mildew spores. Physiol Mol. Plant Pathol 61:151–161. doi:10.1006/pmpp.2002.0429

    CAS  Google Scholar 

  • Ward O, Singh A (2005) Omega 3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652. doi:10.1016/j.procbio.2005.02.020

    Article  CAS  Google Scholar 

  • Weissbrodt E, Barth G, Weber H, Stottmeister U, Duresch R, Richter P (1988) Production of 2-oxoglutaric acid by yeasts. Patent DD 267999

  • Wu Y, Li R, Hildebrand DF (2012) Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog Lipid Res 51:340–349. doi:10.1016/j.plipres.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  • Xing J (2001) The biological activities of palmitoleic acid: opportunities for exploitation. Degree: Ph.D. Degree Year: Institute: Rutgers The State University of New Jersey-New Brunswick

  • Yin X, Madzak C, Du G, Zhou J, Chen J (2012) Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 96:1527–1537. doi:10.1007/s00253-012-4192-z

    Article  CAS  PubMed  Google Scholar 

  • Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 7:673–682. doi:10.1002/bit.22859

    Article  Google Scholar 

  • Zeikus JG, Jain MK, Elankova PE (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552. doi:10.1007/s002530051431

    Article  CAS  Google Scholar 

  • Zeng Y, Ji XJ, Chang SM, Nie ZK, Huang H (2012) Improving arachidonic acid accumulation in Mortierella alpina through B-group vitamin addition. Bioprocess Biosyst Eng 35:683–688

  • Zhang AH, Ji XJ, Wu WJ, Ren LJ, Yu YD, Huang H (2015) Lipid fraction and intracellular metabolite analysis reveal the mechanism of arachidonic acid-rich oil accumulation in the aging process of Mortierella alpina. J Agric Food Chem 63(44):9812–9819. doi:10.1021/acs.jafc.5b0421

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhou H, Du G, Liu L, Chen J (2010) Screening of a thiamine-auxotrophic yeast for α-ketoglutaric acid overproduction. Lett Appl Microbiol 51:264–271. doi:10.1111/j.1472-765X.2010.02889.x

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Yu LJ, Li W, Zhou PP, Li CY (2006) Optimization of arachidonic acid production by fed-batch culture of Mortierella alpina based on dynamic analysis. Enzyme Microb Technol 386:735–740

Download references

Acknowledgements

The study was supported by the Russian Foundation for Basic Research (project no. 16-08-00702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor G. Morgunov.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgunov, I.G., Kamzolova, S.V., Dedyukhina, E.G. et al. Application of organic acids for plant protection against phytopathogens. Appl Microbiol Biotechnol 101, 921–932 (2017). https://doi.org/10.1007/s00253-016-8067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8067-6

Keywords

Navigation