Skip to main content
Log in

Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The yeast Yarrowia lipolytica is able to secrete high amounts of several organic acids under conditions of growth limitation and carbon source excess. Here we report the production of citric acid (CA) in a fed-batch cultivation process on sucrose using the recombinant Y. lipolytica strain H222-S4(p67ICL1) T5, harbouring the invertase encoding ScSUC2 gene of Saccharomyces cerevisiae under the inducible XPR2 promoter control and multiple ICL1 copies (10–15). The pH-dependent expression of invertase was low at pH 5.0 and was identified as limiting factor of the CA-production bioprocess. The invertase expression was sufficiently enhanced at pH 6.0–6.8 and resulted in production of 127–140 g l−1 CA with a yield Y CA of 0.75–0.82 g g−1, whereas at pH 5.0, 87 g l −1 with a yield Y CA of 0.51 gg−1 were produced. The CA-productivity Q CA increased from 0.40 g l −1 h−1 at pH 5.0 up to 0.73 g l −1 h−1 at pH 6.8. Accumulation of glucose and fructose at high invertase expression level at pH 6.8 indicated a limitation of CA production by sugar uptake. The strain H222-S4(p67ICL1) T5 also exhibited a gene–dose-dependent high isocitrate lyase expression resulting in strong reduction (<5%) of isocitric acid, a by-product during CA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • BACAS-Belgian Academy Council of Applied Science (2004) Industrial biotechnology and sustainable chemistry. Brussels, 1-29, http://wbt.dechema.de/img/wbt_/Literatur/BACAS-Studie.pdf

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin Heidelberg New York, pp 313–388

    Chapter  Google Scholar 

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  Google Scholar 

  • Barth G, Weber H (1983) Genetic studies in the yeast Saccharomyces lipolytica. Inactivation and mutagenesis. Z Allg Mikrobiol 23:147–157

    Article  CAS  Google Scholar 

  • Behrens U, Weißbrodt E, Lehmann W (1978) Zur Kinetik der Citronensäurebildung bei Candida lipolytica. Z Allg Mikrobiol 18:549–558

    Article  CAS  Google Scholar 

  • Bizukojc M, Ledakowicz S (2004) The kinetics of simultaneous glucose and fructose uptake and product formation by Aspergillus niger in citric acid fermentation. Process Biochem 39:2261–2268

    Article  CAS  Google Scholar 

  • Crolla A, Kennedy KJ (2001) Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J Biotechnol 89:27–40

    Article  CAS  Google Scholar 

  • Diezemann A, Boles E (2003) Functional characterization of the Frt1 sugar transporter and fructose uptake in Klyveromyces lactis. Curr Genet 43:281–288

    Article  CAS  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  CAS  PubMed  Google Scholar 

  • Förster A (2006) Untersuchungen zur Nutzung der Hefe Yarrowia lipolytica für die Gewinnung von Citronensäure aus nachwachsenden Rohstoffen. Ph.D. thesis, Institut für Mikrobiologie, Technische Universität Dresden

  • Goldstein A, Lampen JO (1975) Beta-D-fructofuranoside fructohydrolase from yeast. Methods Enzymol 42:504–511

    Article  CAS  PubMed  Google Scholar 

  • Heiland S, Radovanovic N, Höfer M, Winderickx J, Lichtenberg H (2000) Multiple hexose transporters of Schizosaccharomyces pombe. J Bacteriol 182:2153–2162

    Article  CAS  PubMed  Google Scholar 

  • Juretzek T, Le Dall MT, Mauersberger S, Gaillardin C, Barth G, Nicaud JM (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113

    Article  CAS  PubMed  Google Scholar 

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    Article  CAS  PubMed  Google Scholar 

  • Kautola H, Rymowicz W, Linko YY, Linko P (1992) The utilization of beet molasses in citric acid production with yeast. Sci aliments 12:383–392

    CAS  Google Scholar 

  • Kruse K, Förster A, Mauersberger S, Barth G (2004) Method for the biotechnological production of citric acid by means of a genetically modified yeast Yarrowia lipolytica. Patent WO2004/009828, DE10333144

  • Kubicek C (2001) Chapter 4.2, Citric acid. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, Cambridge, pp 305–315

    Google Scholar 

  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191

    Article  CAS  Google Scholar 

  • Madzak C, Tréton B, Blanchin-Roland S, Cordero Otero RR, Gaillardin C (1999) Functional analysis of upstream regulating regions from the Yarrowia lipolyticaXPR2 promoter. Microbiology 145:75–87

    Article  CAS  Google Scholar 

  • Mansfeld J, Förster M, Hoffmann T, Schellenberger A, Dautzenberg H (1995) Coimmobilization of Yarrowia lipolytica cells and invertase in polyelectrolyte complex microcapsules. Enzyme Microb Technol 17:11–17

    Article  CAS  Google Scholar 

  • Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12:87–132

    Article  CAS  PubMed  Google Scholar 

  • Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica. Generation of tagged mutants in genes involved in hydrophobic substrates utilization. J Bacteriol 183:5102–5109

    Article  CAS  PubMed  Google Scholar 

  • Mauersberger S, Kruse K, Barth G (2003) Chapter 63, Induction of citric acid/isocitric acid and α-ketoglutaric acid production in the yeast Yarrowia lipolytica. In: Wolf K, Breunig K, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology. Practical protocols. Springer, Berlin Heidelberg New York, pp 393–400

    Chapter  Google Scholar 

  • Nicaud JM, Fabre E, Gaillardin C (1989) Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet 16:253–260

    Article  CAS  Google Scholar 

  • Ogrydziak DM, Demain AL, Tannenbaum SR (1977) Regulation of extracellular protease production in Candida lipolytica. Biochim Biophys Acta 497:525–538

    Article  CAS  Google Scholar 

  • Rane KD, Sims KA (1995) Citric acid production by Candida lipolytica Y-1095 in cell recycle and fed-batch fermentors. Biotechnol Bioeng 46:325–332

    Article  CAS  Google Scholar 

  • Rane KD, Sims KA (1996) Citric acid production by Yarrowia lipolytica: effect of nitrogen and biomass concentration on yield and productivity. Biotechnol Lett 18:1139–1144

    Article  CAS  Google Scholar 

  • Röhr M, Kubicek CP, Kominek J (1996) Citric acid. In: Rehm HJ, Reed G, Delweg D (eds) Biotechnology, 2nd (edn), vol 6. VCH Verlag Chemie, Weinheim, pp 308–345

    Google Scholar 

  • Stottmeister U, Hoppe K (1991) Organische Genußsäuren. In: Ruttloff H (ed) Lebensmittelbiotechnologie, Entwicklungen und Aspekte. Akademie-Verlag, Berlin, pp 516–547

    Google Scholar 

  • Stottmeister U, Behrens U, Weissbrodt E, Barth G, Franke-Rinker D, Schulze E (1982) Nutzung von Paraffinen und anderen Nichtkohlenhydrat-Kohlenstoffquellen zur mikrobiellen Citronensäuresynthese. Z Allg Mikrobiol 22:399–424

    Article  CAS  Google Scholar 

  • Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883

    Article  CAS  Google Scholar 

  • Wieczorke R, Krampe S, Weiserstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  CAS  Google Scholar 

  • Wojtatowicz M, Rymowics W, Robak M, Zarowska B, Nicaud JM (1997) Kinetics of cell growth and citric acid production by Yarrowia lipolytica Suc+ transformants in sucrose media. Pol J Food Nutr Sci 47:49–54

    Google Scholar 

  • Zarowska B, Wojtatowicz M, Rymowicz W, Robak M (2001) Production of citric acid on sugar beet molasses by single and mixed cultures of Yarrowia lipolytica. Electron J Pol Agric Univ 4(2)

Download references

Acknowledgments

This work was supported by the Sächsisches Staatsministerium für Umwelt und Landwirtschaft (SMUL), Land Saxony, Germany (Grant no. 138811.61/89).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerold Barth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, A., Aurich, A., Mauersberger, S. et al. Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica . Appl Microbiol Biotechnol 75, 1409–1417 (2007). https://doi.org/10.1007/s00253-007-0958-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0958-0

Keywords

Navigation