Skip to main content

Enzyme Immobilization and Its Application Strategies in Food Products

  • Chapter
  • First Online:
Novel Food Grade Enzymes

Abstract

Enzymes are the dominating class of biocatalysts, which are extensively employed in food industries. Immobilization of enzymes on inactive and not soluble supports practically increases their efficiency owning to their high stability and multiple reuses, while it can negatively impact enzyme activity. The characteristics of immobilized enzymes are based on the procedure of immobilization and achieved beneficial properties, such as biocompatibility, chemical and thermal stability, the impossibility to dissolve (leak) in the reaction liquids, reconstitution, recyclability, and cost efficiency. Various immobilized enzymatic systems, like proteases, amino acylase, glucose isomerase, β-galactosidase, aspartase, lipases, or glucosidase have been shown to be techno-economically used in food industries on a multi-ton’s scale per year. This chapter provides a general survey of the benefits and applications of the immobilization enzymes with a major focus on the food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albayrak, N., & Yang, S. T. (2002). Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnology Progress, 18(2), 240–251.

    Article  CAS  PubMed  Google Scholar 

  • Alissandratos, A., & Halling, P. J. (2012). Enzymatic acylation of starch. Bioresource Technology, 115, 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Alkan, S., Gür, A. Y. C. A. N., Ertan, M., Savran, A., Gür, T., & Genel, Y. (2009). Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods. African Journal of Biotechnology, 8(11).

    Google Scholar 

  • Amirbandeh, M., & Taheri-Kafrani, A. (2016). Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: Improved stability and reusability. International Journal of Biological Macromolecules, 93, 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  • Andler, S. M., & Goddard, J. M. (2018). Transforming food waste: How immobilized enzymes can valorize waste streams into revenue streams. NPJ Science of Food, 2(1), 1–11.

    Article  Google Scholar 

  • Antony, N., Balachandran, S., & Mohanan, P. V. (2016). Immobilization of diastase α-amylase on nano zinc oxide. Food Chemistry, 211, 624–630.

    Article  CAS  PubMed  Google Scholar 

  • Asgher, M., Shahid, M., Kamal, S., & Iqbal, H. M. N. (2014). Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. Journal of Molecular Catalysis B: Enzymatic, 101, 56–66.

    Article  CAS  Google Scholar 

  • Asif, M. (2011). Process advantages and product benefits of interesterification in oils and fats. International Journal of Nutrition, Pharmacology, Neurological Diseases, 1(2), 134.

    Article  CAS  Google Scholar 

  • Axelsson, A., & Zacchi, G. (1990). Economic evaluation of the hydrolysis of lactose using immobilized β-galactosidase. Applied Biochemistry and Biotechnology, 24(1), 679.

    Article  Google Scholar 

  • Babaki, M., Yousefi, M., Habibi, Z., & Mohammadi, M. (2017). Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renewable Energy, 105, 465–472.

    Article  CAS  Google Scholar 

  • Bassan, J. C., de Souza Bezerra, T. M., Peixoto, G., Da Cruz, C. Z. P., Galán, J. P. M., Vaz, A. B. D. S., et al. (2016). Immobilization of trypsin in lignocellulosic waste material to produce peptides with bioactive potential from whey protein. Materials, 9(5), 357.

    Article  PubMed Central  CAS  Google Scholar 

  • Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607.

    Article  CAS  Google Scholar 

  • Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Molecular and industrial aspects of glucose isomerase. Microbiological Reviews, 60(2), 280–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilal, M., & Iqbal, H. M. (2019). Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities–A review. Food Research International, 123, 226–240.

    Article  CAS  PubMed  Google Scholar 

  • Blanco, R. M., Terreros, P., Fernández-Pérez, M., Otero, C., & Díaz-González, G. (2004). Functionalization of mesoporous silica for lipase immobilization: Characterization of the support and the catalysts. Journal of Molecular Catalysis B: Enzymatic, 30(2), 83–93.

    Article  CAS  Google Scholar 

  • Bodakowska-Boczniewicz, J., & Garncarek, Z. (2019). Immobilization of naringinase from Penicillium decumbens on chitosan microspheres for debittering grapefruit juice. Molecules, 24(23), 4234.

    Article  CAS  PubMed Central  Google Scholar 

  • Boller, T., Meier, C., & Menzler, S. (2002). Eupergit oxirane acrylic beads: How to make enzymes fit for biocatalysis. Organic Process Research & Development, 6(4), 509–519.

    Article  CAS  Google Scholar 

  • Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilization. Biotechnology Letters, 31(11), 1639.

    Article  CAS  PubMed  Google Scholar 

  • Brígida, A. I., Pinheiro, Á. D., Ferreira, A. L., & Gonçalves, L. R. (2007). Immobilization of Candida antarctica lipase B by adsorption to green coconut fiber. In Biotechnology for fuels and chemicals (pp. 293–307). Humana Press.

    Chapter  Google Scholar 

  • Burham, H., Rasheed, R. A. G. A., Noor, N. M., Badruddin, S., & Sidek, H. (2009). Enzymatic synthesis of palm-based ascorbyl esters. Journal of Molecular Catalysis B: Enzymatic, 58(1–4), 153–157.

    Article  CAS  Google Scholar 

  • Busto, M. D., Meza, V., Ortega, N., & Perez-Mateos, M. (2007). Immobilization of naringinase from Aspergillus niger CECT 2088 in poly (vinyl alcohol) cryogels for the debittering of juices. Food Chemistry, 104(3), 1177–1182.

    Article  CAS  Google Scholar 

  • Chen, Y., Yu, B., Lin, J., Naidu, R., & Chen, Z. (2016). Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 289, 463–470.

    Article  CAS  Google Scholar 

  • Cirpan, A., Alkan, S., Toppare, L. E. V. E. N. T., Hepuzer, Y., & Yagci, Y. (2003). Immobilization of invertase in conducting copolymers of 3-methylthienyl methacrylate. Bioelectrochemistry, 59(1–2), 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Costa, S. A., Azevedo, H. S., & Reis, R. L. (2005). Enzyme immobilization in biodegradable polymers for biomedical applications. In R. L. Reis & J. S. Roma (Eds.), Biodegradable systems in tissue engineering and regenerative medicine (pp. 301–323). CRC Press, LLC.

    Google Scholar 

  • Crabb, W. D., & Shetty, J. K. (1999). Commodity scale production of sugars from starches. Current Opinion in Microbiology, 2(3), 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Deere, J., Magner, E., Wall, J. G., & Hodnett, B. K. (2002). Mechanistic and structural features of protein adsorption onto mesoporous silicates. The Journal of Physical Chemistry B, 106(29), 7340–7347.

    Article  CAS  Google Scholar 

  • Defaei, M., Taheri-Kafrani, A., Miroliaei, M., & Yaghmaei, P. (2018). Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. International Journal of Biological Macromolecules, 113, 354–360.

    Article  CAS  PubMed  Google Scholar 

  • De Maio, A., El-Masry, M. M., Portaccio, M., Diano, N., Di Martino, S., Mattei, A., et al. (2003). Influence of the spacer length on the activity of enzymes immobilised on nylon/polyGMA membranes: Part 1. Isothermal conditions. Journal of Molecular Catalysis B: Enzymatic, 21(4–6), 239–252.

    Article  Google Scholar 

  • Dey, G., Nagpal, V., & Banerjee, R. (2002). Immobilization of α-amylase from Bacillus circulans GRS 313 on coconut fiber. Applied Biochemistry and Biotechnology, 102(1–6), 303–313.

    Article  PubMed  Google Scholar 

  • DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15), 6437–6474.

    Article  CAS  PubMed  Google Scholar 

  • Doshi, P., Srivastava, G., Pathak, G., & Dikshit, M. (2014). Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel. Waste Management, 34(10), 1836–1846.

    Article  CAS  PubMed  Google Scholar 

  • Emtiazi, G., Naghavi, N., & Bordbar, A. (2001). Biodegradation of lignocellulosic waste by Aspergillus terreus. Biodegradation, 12(4), 257–261.

    Article  Google Scholar 

  • Fang, J. M., Fowler, P. A., Tomkinson, J., & Hill, C. A. S. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers, 47(3), 245–252.

    Article  CAS  Google Scholar 

  • Fernández-Lorente, G., Palomo, J. M., Mateo, C., Munilla, R., Ortiz, C., Cabrera, Z., et al. (2006). Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules, 7(9), 2610–2615.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira-Dias, S., Sandoval, G., Plou, F., & Valero, F. (2013). The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Electronic Journal of Biotechnology, 16(3), 12–12.

    Google Scholar 

  • Gaikwad, S. M., Rao, M. B., & Deshpande, V. V. (1992). d-Glucose/xylose isomerase from Streptomyces: Differential roles of magnesium and cobalt ions. Enzyme and Microbial Technology, 14(4), 317–320.

    Article  CAS  Google Scholar 

  • Gardossi, L., Poulsen, P. B., Ballesteros, A., Hult, K., Švedas, V. K., Vasić-Rački, Đ., et al. (2010). Guidelines for reporting of biocatalytic reactions. Trends in Biotechnology, 28(4), 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16), 2885–2904.

    CAS  Google Scholar 

  • Gerard, M., Chaubey, A., & Malhotra, B. D. (2002). Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 17(5), 345–359.

    Article  CAS  PubMed  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Saiz, J. M., & Pizarro, C. (2001). Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. European Polymer Journal, 37(3), 435–444.

    Article  CAS  Google Scholar 

  • Herzog, G., Gorgy, K., Gulon, T., & Cosnier, S. (2005). Electrogeneration and characterization of photoactivable films and their application for enzyme grafting. Electrochemistry Communications, 7(8), 808–814.

    Article  CAS  Google Scholar 

  • Hirohara, H., Yamamoto, H., Kawano, E., & Nabeshima, S. (1981) Immobilized lactase, its preparation and use. EP 0037667B1.

    Google Scholar 

  • Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: An update. Journal of Chemical Biology, 6(4), 185–205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong, Y. G., Moon, Y. M., Hong, J. W., Choi, T. R., Jung, H. R., Yang, S. Y., Jang, D.-W., Park, Y.-R., Brigham, C. J., Kim, J.-S., Lee, Y.-K., & Lee, Y. K. (2019). Discarded egg yolk as an alternate source of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Journal of Microbiology and Biotechnology, 29(3), 382–391.

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Zhan, Y., Shi, X., Chen, J., Deng, H., & Du, Y. (2017). Controllable immobilization of naringinase on electrospun cellulose acetate nanofibers and their application to juice debittering. International Journal of Biological Macromolecules, 98, 630–636.

    Article  CAS  PubMed  Google Scholar 

  • Hudson, S., Cooney, J., & Magner, E. (2008). Proteins in mesoporous silicates. Angewandte Chemie International Edition, 47(45), 8582–8594.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, E. T., & Lee, S. (2019). Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catalysis, 9(5), 4402–4425.

    Article  CAS  Google Scholar 

  • Ispas, C., Sokolov, I., & Andreescu, S. (2009). Enzyme-functionalized mesoporous silica for bioanalytical applications. Analytical and Bioanalytical Chemistry, 393(2), 543–554.

    Article  CAS  PubMed  Google Scholar 

  • Kahraman, M. V., Bayramoğlu, G., Kayaman-Apohan, N., & Güngör, A. (2007). α-Amylase immobilization on functionalized glass beads by covalent attachment. Food Chemistry, 104(4), 1385–1392.

    Article  CAS  Google Scholar 

  • Katchalski-Katzir, E., & Kraemer, D. M. (2000). Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B: Enzymatic, 10(1–3), 157–176.

    Article  CAS  Google Scholar 

  • Kazemzadeh, S., Naghavi, N. S., Emami-Karvani, Z., Fouladgar, M., & Emtiazi, G. (2020). Gas chromatography-mass spectrometry analyses of crude oil bioremediation by the novel Klebsiella variicola SKV2 immobilized in polyurethane polymer scaffold and two-layer microcapsulation. Bioremediation Journal, 24(2–3), 129–149.

    Article  CAS  Google Scholar 

  • Keller, T. M., Michel, S. C., Fröhlich, J., Fink, D., Caduff, R., Marincek, B., & Kubik-Huch, R. A. (2004). USPIO-enhanced MRI for preoperative staging of gynecological pelvic tumors: Preliminary results. European Radiology, 14(6), 937–944.

    Article  PubMed  Google Scholar 

  • Klein, M. P., Scheeren, C. W., Lorenzoni, A. S. G., Dupont, J., Frazzon, J., & Hertz, P. F. (2011). Ionic liquid-cellulose film for enzyme immobilization. Process Biochemistry, 46(6), 1375–1379.

    Article  CAS  Google Scholar 

  • Klis, M., Karbarz, M., Stojek, Z., Rogalski, J., & Bilewicz, R. (2009). Thermoresponsive poly (N-isopropylacrylamide) gel for immobilization of laccase on indium tin oxide electrodes. The Journal of Physical Chemistry B, 113(17), 6062–6067.

    Article  CAS  PubMed  Google Scholar 

  • Klouda, L., & Mikos, A. G. (2008). Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 68(1), 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Kluchova, K., Zboril, R., Tucek, J., Pecova, M., Zajoncova, L., Safarik, I., et al. (2009). Superparamagnetic maghemite nanoparticles from solid-state synthesis–Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials, 30(15), 2855–2863.

    Article  CAS  PubMed  Google Scholar 

  • Koh, W. G., & Pishko, M. (2005). Immobilization of multi-enzyme microreactors inside microfluidic devices. Sensors and Actuators B: Chemical, 106(1), 335–342.

    Article  CAS  Google Scholar 

  • Koller, M., Hesse, P., & Braunegg, G. (2019). Application of whey retentate as complex nitrogen source for growth of the polyhydroxyalkanoate producer Hydrogenophaga pseudoflava strain DSM1023. The EuroBiotech Journal, 3(2), 78–89.

    Article  Google Scholar 

  • Koller, M., Marsalek, L., & Braunegg, G. (2016). PHA Biopolyester production from surplus whey: Microbiological and engineering aspects. Recent Advances in Biotechnology, 1, 100–172.

    Article  Google Scholar 

  • Koller, M., Shahzad, K., & Braunegg, G. (2018). Waste streams of the animal-processing industry as feedstocks to produce polyhydroxyalkanoate biopolyesters. Applied Food Biotechnology, 5(4), 193–203.

    CAS  Google Scholar 

  • Kooi, M. E., Cappendijk, V. C., Cleutjens, K. B. J. M., Kessels, A. G. H., Kitslaar, P. J. E. H. M., Borgers, M., et al. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 107(19), 2453–2458.

    Article  CAS  PubMed  Google Scholar 

  • Koszelewski, D., Müller, N., Schrittwieser, J. H., Faber, K., & Kroutil, W. (2010). Immobilization of ω-transaminases by encapsulation in a sol–gel/celite matrix. Journal of Molecular Catalysis B: Enzymatic, 63(1–2), 39–44.

    Article  CAS  Google Scholar 

  • Kouassi, G. K., Irudayaraj, J., & McCarty, G. (2005). Activity of glucose oxidase functionalized onto magnetic nanoparticles. BioMagnetic Research and Technology, 3(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause, M. H., Kwong, K. K., Gragoudas, E. S., & Young, L. H. (2004). MRI of blood volume with superparamagnetic iron in choroidal melanoma treated with thermotherapy. Magnetic Resonance Imaging, 22(6), 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M. B., Gao, Y., Shen, W., & He, L. (2015). Valorisation of protein waste: An enzymatic approach to make commodity chemicals. Frontiers of Chemical Science and Engineering, 9(3), 295–307.

    Article  CAS  Google Scholar 

  • Landarani-Isfahani, A., Taheri-Kafrani, A., Amini, M., Mirkhani, V., Moghadam, M., Soozanipour, A., & Razmjou, A. (2015). Xylanase immobilized on novel multifunctional hyperbranched polyglycerol-grafted magnetic nanoparticles: An efficient and robust biocatalyst. Langmuir, 31(33), 9219–9227.

    Article  CAS  PubMed  Google Scholar 

  • Laskar, I. B., Rajkumari, K., Gupta, R., Chatterjee, S., Paul, B., & Rokhum, L. (2018). Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Advances, 8(36), 20131–20142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, S., Xu, Y., Fan, G., Xiao, M., & Pan, S. (2011). Immobilization of naringinase on mesoporous molecular sieve MCM-41 and its application to debittering of white grapefruit. Applied Surface Science, 257(9), 4096–4099.

    Article  CAS  Google Scholar 

  • Li, Z., Zhang, Y., Su, Y., Ouyang, P., Ge, J., & Liu, Z. (2014). Spatial co-localization of multi-enzymes by inorganic nanocrystal–protein complexes. Chemical Communications, 50(83), 12465–12468.

    Article  CAS  PubMed  Google Scholar 

  • Lim, B. C., Kim, H. J., & Oh, D. K. (2008). Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose isomerase from Thermotoga neapolitana. Applied Biochemistry and Biotechnology, 149(3), 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., Huang, W., Pan, S., Li, Y., Yu, L., & He, D. (2020). Covalent immobilization and characterization of penicillin G acylase on magnetic Fe2O3/Fe3O4 heterostructure nanoparticles prepared via a novel solution combustion and gel calcination process. International Journal of Biological Macromolecules, 162, 1587–1596.

    Article  CAS  PubMed  Google Scholar 

  • Lozinsky, V. I., Simenel, I. A., Kulakova, V. K., Kurskaya, E. A., Babushkina, T. A., Klimova, T. P., et al. (2003). Synthesis and studies of N-vinylcaprolactam/N-vinylimidazole copolymers that exhibit the “proteinlike” behavior in aqueous media. Macromolecules, 36(19), 7308–7323.

    Article  CAS  Google Scholar 

  • Luo, X., & Zhang, L. (2010). Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules, 11(11), 2896–2903.

    Article  CAS  PubMed  Google Scholar 

  • Marangoni, A. G., & Rousseau, D. (1998). Chemical and enzymatic modification of butterfat and butterfat-canola oil blends. Food Research International, 31(8), 595–599.

    Article  CAS  Google Scholar 

  • Marguet, M., Bonduelle, C., & Lecommandoux, S. (2013). Multicompartmentalized polymeric systems: Towards biomimetic cellular structure and function. Chemical Society Reviews, 42(2), 512–529.

    Article  CAS  PubMed  Google Scholar 

  • Mehnati-Najafabadi, V., Taheri-Kafrani, A., & Bordbar, A. K. (2018). Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability. International Journal of Biological Macromolecules, 107, 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Mao, Y., Černigoj, U., Zalokar, V., Štrancar, A., & Kulozik, U. (2017). Production of β-lactoglobulin hydrolysates by monolith based immobilized trypsin reactors. Electrophoresis, 38(22–23), 2947–2956.

    Article  CAS  PubMed  Google Scholar 

  • Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    Article  CAS  Google Scholar 

  • Mehrasbi, M. R., Mohammadi, J., Peyda, M., & Mohammadi, M. (2017). Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renewable Energy, 101, 593–602.

    Article  CAS  Google Scholar 

  • Miletić, N., Abetz, V., Ebert, K., & Loos, K. (2010). Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromolecular Rapid Communications, 31(1), 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Miyanaga, M., Tanaka, T., Sakiyama, T., & Nakanishi, K. (1995). Synthesis of aspartame precursor with an immobilized thermolysin in mixed organic solvents. Biotechnology and Bioengineering, 46(6), 631–635.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, T., Rathner, R., Reishofer, D., Koller, M., Elschner, T., Spirk, S., et al. (2015). Designing hydrophobically modified polysaccharide derivatives for highly efficient enzyme immobilization. Biomacromolecules, 16(8), 2403–2411.

    Article  CAS  PubMed  Google Scholar 

  • Nedwin, G. E., Sharma, V., & Shetty, J. K. (2014). Alpha-amylase blend for starch processing and method of use thereof. US 2014/0087429 A1, 2014.

    Google Scholar 

  • Netto, C. G., Toma, H. E., & Andrade, L. H. (2013). Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. Journal of Molecular Catalysis B: Enzymatic, 85, 71–92.

    Article  CAS  Google Scholar 

  • Nisha, S., Karthick, S. A., & Gobi, N. (2012). A review on methods, application and properties of immobilized enzyme. Chemical Science Review and Letters, 1(3), 148–155.

    Google Scholar 

  • Oh, D. K. (2007). Tagatose: Properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76(1), 1.

    Article  CAS  PubMed  Google Scholar 

  • Olson, A. C., Gray, G. M., & Guadagni, D. G. (1979). Naringin bitterness of grapefruit juice debittered with naringinase immobilized in a hollow fiber. Journal of Food Science, 44(5), 1358–1361.

    Article  CAS  Google Scholar 

  • Ovsejevi, K., Manta, C., & Batista-Viera, F. (2013). Reversible covalent immobilization of enzymes via disulfide bonds. In Immobilization of enzymes and cells (pp. 89–116). Humana Press.

    Chapter  Google Scholar 

  • Oyama, K., Nishimura, S., Nonaka, Y., Kihara, K., & Hashimoto, T. (1981). Synthesis of an aspartame precursor by immobilized thermolysin in an organic solvent. The Journal of Organic Chemistry, 46(25), 5241–5242.

    Article  CAS  Google Scholar 

  • Panesar, P. S., Kumari, S., & Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research, 2010, 473137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedroche, J., del Mar Yust, M., Mateo, C., Fernández-Lafuente, R., Girón-Calle, J., Alaiz, M., et al. (2007). Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: Correlation between enzyme–support linkages and thermal stability. Enzyme and Microbial Technology, 40(5), 1160–1166.

    Article  CAS  Google Scholar 

  • Pernicova, I., Enev, V., Marova, I., & Obruca, S. (2019). Interconnection of waste chicken feather biodegradation and keratinase and mcl-PHA production employing Pseudomonas putida KT2440. Applied Food Biotechnology, 6(1), 83–90.

    CAS  Google Scholar 

  • Pierre, A. C. (2004). The sol-gel encapsulation of enzymes. Biocatalysis and Biotransformation, 22(3), 145–170.

    Article  CAS  Google Scholar 

  • Puri, M., Kaur, A., Singh, R., & Kanwar, J. (2008). Immobilized enzyme technology for debittering citrus fruit juices (pp. 91–103). Application of new technologies.

    Google Scholar 

  • Puri, M., Marwaha, S. S., & Kothari, R. M. (1996). Studies on the applicability of alginate-entrapped naringiase for the debittering of kinnow juice. Enzyme and Microbial Technology, 18(4), 281–285.

    Article  CAS  Google Scholar 

  • Puri, M., Seth, M., Marwaha, S. S., & Kothari, R. M. (2001). Debittering of kinnow mandarin juice by covalently bound naringinase on hen egg white. Food Biotechnology, 15(1), 13–23.

    Article  CAS  Google Scholar 

  • Rana, M., Kumari, A., Chauhan, G. S., & Chauhan, K. (2014). Modified chitosan microspheres in non-aggregated amylase immobilization. International Journal of Biological Macromolecules, 66, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Rathner, R., Petz, S., Tasnádi, G., Koller, M., & Ribitsch, V. (2017). Monitoring the kinetics of biocatalytic removal of the endocrine disrupting compound 17α-ethinylestradiol from differently polluted wastewater bodies. Journal of Environmental Chemical Engineering, 5(2), 1920–1926.

    Article  CAS  Google Scholar 

  • Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373, 1254–1278.

    Article  CAS  Google Scholar 

  • Reshmi, R., Sanjay, G., & Sugunan, S. (2006). Enhanced activity and stability of α-amylase immobilized on alumina. Catalysis Communications, 7(7), 460–465.

    Article  CAS  Google Scholar 

  • Roy, I., & Gupta, M. N. (2003). Lactose hydrolysis by Lactozym™ immobilized on cellulose beads in batch and fluidized bed modes. Process Biochemistry, 39(3), 325–332.

    Article  CAS  Google Scholar 

  • Sardar, M., Roy, I., & Gupta, M. N. (2000). Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer EudragitTM L-100. Enzyme and Microbial Technology, 27(9), 672–679.

    Article  CAS  PubMed  Google Scholar 

  • Schellenberger, E. A., Bogdanov Jr, A., Högemann, D., Tait, J., Weissleder, R., & Josephson, L. (2002). Annexin V–CLIO: A nanoparticle for detecting apoptosis by MRI. Molecular Imaging, 1(2), 15353500200202103.

    Google Scholar 

  • Sheldon, R. A. (2007a). Cross-linked enzyme aggregates (CLEA® s): Stable and recyclable biocatalysts. Biochemical Society Transactions, 35(6), 1583–1587.

    Article  CAS  PubMed  Google Scholar 

  • Sheldon, R. A. (2007b). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis & Catalysis, 349(8–9), 1289–1307.

    Article  CAS  Google Scholar 

  • Sheldon, R. A., & Woodley, J. M. (2018). Role of biocatalysis in sustainable chemistry. Chemical Reviews, 118(2), 801–838.

    Article  CAS  PubMed  Google Scholar 

  • Silva, J. A., Macedo, G. P., Rodrigues, D. S., Giordano, R. L. C., & Gonçalves, L. R. B. (2012). Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochemical Engineering Journal, 60, 16–24.

    Article  CAS  Google Scholar 

  • Rodrigues, R. C., Berenguer-Murcia, Á., & Fernandez-Lafuente, R. (2011). Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Advanced Synthesis & Catalysis, 353(13), 2216–2238.

    Article  CAS  Google Scholar 

  • Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307.

    Article  CAS  PubMed  Google Scholar 

  • Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11.

    Article  CAS  Google Scholar 

  • Tipton, K. F., Armstrong, R. N., Bakker, B. M., Bairoch, A., Cornish-Bowden, A., Halling, P. J., et al. (2014). Standards for reporting enzyme data: The STRENDA consortium: What it aims to do and why it should be helpful. Perspectives in Science, 1(1–6), 131–137.

    Article  Google Scholar 

  • Torres, R., Mateo, C., Fuentes, M., Palomo, J. M., Ortiz, C., Fernández-Lafuente, R., & Guisan, J. M. (2002). Reversible immobilization of invertase on Sepabeads coated with polyethyleneimine: Optimization of the biocatalyst’s stability. Biotechnology Progress, 18(6), 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  • Tosa, T., Sato, T., Mori, T., & Chibata, I. (1974). Basic studies for continuous production of L-aspartic acid by immobilized Escherichia coli cells. Applied Microbiology, 27(5), 886–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosa, T., Sato, T., Mori, T., Matuo, Y., & Chibata, I. (1973). Continuous production of L-aspartic acid by immobilized aspartase. Biotechnology and Bioengineering, 15(1), 69–84.

    Article  CAS  Google Scholar 

  • Tripathi, A., Sami, H., Jain, S. R., Viloria-Cols, M., Zhuravleva, N., Nilsson, G., Jungvid, H., & Kumar, A. (2010). Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production. Enzyme and Microbial Technology, 47(1–2), 44–51.

    Article  CAS  Google Scholar 

  • Tsen, H. Y. (1984). Factors affecting the inactivation of naringinase immobilized on chitin during debittering of fruit juice. Journal of Fermentation Technology, 62(3), 263–267.

    CAS  Google Scholar 

  • Van de Velde, F., Lourenço, N. D., Pinheiro, H. M., & Bakker, M. (2002). Carrageenan: A food-grade and biocompatible support for immobilisation techniques. Advanced Synthesis & Catalysis, 344(8), 815–835.

    Article  Google Scholar 

  • Vescovi, V., Rojas, M. J., Baraldo, A., Botta, D. C., Santana, F. A. M., Costa, J. P., et al. (2016). Lipase-catalyzed production of biodiesel by hydrolysis of waste cooking oil followed by esterification of free fatty acids. Journal of the American Oil Chemists’ Society, 93(12), 1615–1624.

    Article  CAS  Google Scholar 

  • Vianello, F., Ragusa, S., Cambria, M. T., & Rigo, A. (2006). A high sensitivity amperometric biosensor using laccase as biorecognition element. Biosensors and Bioelectronics, 21(11), 2155–2160.

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve, P. (2007). Lipases in lipophilization reactions. Biotechnology Advances, 25(6), 515–536.

    Article  CAS  PubMed  Google Scholar 

  • Virtanen, J., Baron, C., & Tenhu, H. (2000). Grafting of poly (N-isopropylacrylamide) with poly (ethylene oxide) under various reaction conditions. Macromolecules, 33(2), 336–341.

    Article  CAS  Google Scholar 

  • Virtanen, J., & Tenhu, H. (2000). Thermal properties of poly (N-isopropylacrylamide)-g-poly (ethylene oxide) in aqueous solutions: Influence of the number and distribution of the grafts. Macromolecules, 33(16), 5970–5975.

    Article  CAS  Google Scholar 

  • Walle, T. (2009). Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. International Journal of Molecular Sciences, 10(11), 5002–5019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, K., Chen, X., Zheng, R., & Zheng, Y. (2020). Immobilization of multi-enzymes on support materials for efficient biocatalysis. Frontiers in Bioengineering and Biotechnology, 8.

    Google Scholar 

  • Zhaoyu, Z., Ping, X., Keren, S., Weiwei, Z., Chunmiao, H., & Peng, L. (2020). Di-functional magnetic nanoflowers: A highly efficient support for immobilizing penicillin G acylase. Journal of the Chinese Chemical Society, 67, 1591–1601.

    Article  CAS  Google Scholar 

  • Zhi, Y., Wu, Q., & Xu, Y. (2017). Production of surfactin from waste distillers’ grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresource Technology, 235, 96–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Koller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naghavi, N.S., Sanei, N., Koller, M. (2022). Enzyme Immobilization and Its Application Strategies in Food Products. In: Dutt Tripathi, A., Darani, K.K., Srivastava, S.K. (eds) Novel Food Grade Enzymes . Springer, Singapore. https://doi.org/10.1007/978-981-19-1288-7_15

Download citation

Publish with us

Policies and ethics