Skip to main content
Log in

Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane is the most efficient large-scale crop capable of supplying sufficient carbon substrate, in the form of sucrose, needed during fermentative feedstock production. However, sucrose metabolism in Escherichia coli is not well understood because the two most common strains, E. coli K-12 and B, do not grow on sucrose. Here, using a sucrose utilizing strain, E. coli W, we undertake an in-depth comparison of sucrose and glucose metabolism including growth kinetics, metabolite profiling, microarray-based transcriptome analysis, labelling-based proteomic analysis and 13C-fluxomics. While E. coli W grew comparably well on sucrose and glucose integration of the omics, datasets showed that during growth on each carbon source, metabolism was distinct. The metabolism was generally derepressed on sucrose, and significant flux rearrangements were observed in central carbon metabolism. These included a reduction in the flux of the oxidative pentose phosphate pathway branch, an increase in the tricarboxylic acid cycle flux and a reduction in the glyoxylate shunt flux due to the dephosphorylation of isocitrate dehydrogenase. But unlike growth on other sugars that induce cAMP-dependent Crp regulation, the phosphoenol-pyruvate-glyoxylate cycle was not active on sucrose. Lower acetate accumulation was also observed in sucrose compared to glucose cultures. This was linked to induction of the acetate catabolic genes actP and acs and independent of the glyoxylic shunt. Overall, the cells stayed highly oxidative. In summary, sucrose metabolism was fast, efficient and led to low acetate accumulation making it an ideal carbon source for industrial fermentation with E. coli W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK (2011) The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12:9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arifin Y, Sabri S, Sugiarto H, Krömer JO, Vickers CE, Nielsen LK (2011) Deletion of cscR in Escherichia coli W improves growth and poly-3-hydroxyburyrate (PHB) production from sucrose in fed batch culture. J Biotechnol 156:275–278. doi:10.1016/j.jbiotec.2011.07.003

    Article  CAS  Google Scholar 

  • Arunasri K, Adil M, Khan PA, Shivaji S (2014) Global gene expression analysis of long-term stationary phase effects in E. coli K12 MG1655. PLoS ONE 9(5):e96701

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

  • Bockmann J, Heuel H, Lengeler JW (1992) Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol Gen Genet 235:22–32

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Åstrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193. doi:10.1093/bioinformatics/19.2.185

    Article  PubMed  CAS  Google Scholar 

  • Castano-Cerezo S, Pastor JM, Renilla S, Bernal V, Iborra JL, Canovas M (2009) An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Microb Cell Factories 8:54. doi:10.1186/1475-2859-8-54

    Article  Google Scholar 

  • Castaño-Cerezo S, Bernal V, Blanco-Catalá J, Iborra JL, Cánovas M (2011) cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol Microbiol 82:1110–1128. doi:10.1111/j.1365-2958.2011.07873.x

    Article  PubMed  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32(Suppl):490–495. doi:10.1038/ng1031

    Article  PubMed  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi:10.1093/nar/gkn923

    Article  PubMed Central  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031. doi:10.1128/MMBR.00024-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farmer IS, Jones CW (1976) Energetics of Escherichia coli during aerobic growth in continuous culture. Eur J Biochem 67:115–122

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121. doi:10.1038/msb4100155

    Article  PubMed  PubMed Central  Google Scholar 

  • Gimenez R, Nunez MF, Badia J, Aguilar J, Baldoma L (2003) The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185:6448–6455. doi:10.1128/JB.185.21.6448-6455.2003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gleiser IE, Bauer S (1981) Growth of Escherichia coli W to high cell concentration by oxygen level linked control of carbon source concentration. Biotechnol Bioeng 23:1015–1021

    Article  CAS  Google Scholar 

  • Guan K-L, Xiong Y (2011) Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36:108–116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haverkorn van Rijsewijk BR, Nanchen A, Nallet S, Kleijn RJ, Sauer U (2011) Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol 7:477. doi:10.1038/msb.2011.9

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18:S96–S104. doi:10.1093/bioinformatics/18.suppl_1.S96

    Article  PubMed  Google Scholar 

  • Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A, Siepelmeyer J, Lengeler JW (2002) Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 184:5307–5316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kather B, Stingl K, van der Rest ME, Altendorf K, Molenaar D (2000) Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J Bacteriol 182:3204-3209

  • Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate dependent metabolic efficiency at steady state. Microbiol SGM 151:693–706. doi:10.1099/mic.0.27481-0

  • Kleman GL, Strohl WR (1994) Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol 60:3952–3958

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, Wolfe AJ (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:4173–4179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Laporte DC (1993) The isocitrate dehydrogenase phosphorylation cycle: Regulation and enzymology. J Cell Biochem 51:14–18. doi:10.1002/jcb.240510104

    Article  PubMed  CAS  Google Scholar 

  • Lara AR, Caspeta L, Gosset G, Bolivar F, Ramirez OT (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng 99:893–901. doi:10.1002/bit.21664

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Chang HN (1993) High cell-density cultivation of Escherichia coli W using sucrose as carbon source. Biotechnol Lett 15:971–974

    Article  CAS  Google Scholar 

  • Lendenmann U, Snozzi M, Egli T (2000) Growth kinetics of Escherichia coli with galactose and several other sugars in carbon-limited chemostat culture. Can J Microbiol 46:72–80

    Article  PubMed  CAS  Google Scholar 

  • Liao JC, Hou SY, Chao YP (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng 52:129–140. doi:10.1002/(SICI)1097-0290(19961005)52:1<129::AID-BIT13>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  • Licona-Cassani C, Lim S, Marcellin E, Nielsen LK (2014) Temporal dynamics of the Saccharopolyspora erythraea phosphoproteome. Mol Cell Proteomics 13:1219–1230. doi:10.1074/mcp.M113.033951

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927. doi:10.1074/jbc.M414050200

    Article  PubMed  CAS  Google Scholar 

  • Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marcellin E, Licona-Cassani C, Mercer TR, Palfreyman RW, Nielsen LK (2013) Re-annotation of the Saccharopolyspora erythraea genome using a systems biology approach. BMC Genomics 14:699. doi:10.1186/1471-2164-14-699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martinez-Gomez K, Flores N, Castaneda H, Martinez-Batallar G, Hernandez-Chavez G, Ramirez O, Gosset G, Encarnacion S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Factories 11:46

    Article  CAS  Google Scholar 

  • Noguchi Y, Nakai Y, Shimba N, Toyosaki H, Kawahara Y, Sugimoto S, Suzuki E (2004) The energetic conversion competence of Escherichia coli during aerobic respiration studied by P-31 NMR using a circulating fermentation system. J Biochem Tokyo 136:509–515

    Article  PubMed  CAS  Google Scholar 

  • O’Beirne D, Hamer G (2000) The utilisation of glucose/acetate mixtures by Escherichia coli W3110 under aerobic growth conditions. Bioprocess Eng 23:375–380. doi:10.1007/s004499900176

    Article  Google Scholar 

  • Park JH, Jang YS, Lee JW, Lee SY (2011) Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering. Biotechnol Bioeng 108:1140–1147. doi:10.1002/bit.23044

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30. doi:10.1016/j.jbiotec.2003.10.038

    Article  PubMed  CAS  Google Scholar 

  • Pirt SJ (1965) Maintenance energy of bacteria in growing culture. Proc R Soc Lond B Biol 163:224–231

    Article  CAS  Google Scholar 

  • Quek LE, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Factories 8:25. doi:10.1186/1475-2859-8-25

    Article  Google Scholar 

  • Reiling HE, Laurila H, Fiechter A (1985) Mass-culture of Escherichia coli—medium development for low and high-density cultivation of Escherichia coli B/r in minimal and complex media. J Biotechnol 2:191–206

    Article  CAS  Google Scholar 

  • Renilla S, Bernal V, Fuhrer T, Castano-Cerezo S, Pastor JM, Iborra JL, Sauer U, Canovas M (2012) Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures. Appl Microbiol Biotechnol 93:2109–2124. doi:10.1007/s00253-011-3536-4

    Article  PubMed  CAS  Google Scholar 

  • Renouf MA, Wegener MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 32:1144–1155. doi:10.1016/J.Biombioe.2008.02.012

    Article  CAS  Google Scholar 

  • Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, Ross A, Deckwer WD (1991) High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol 20:17–27

    Article  PubMed  CAS  Google Scholar 

  • Sabri S, Nielsen LK, Vickers CE (2013) Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain. Appl Environ Microbiol 79:478–487. doi:10.1128/AEM.02544-12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sahin-Toth M, Frillingos S, Lengeler JW, Kaback HR (1995) Active-transport by the Cscb permease in Escherichia coli K-12. Biochem Biophys Res Commun 208:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:- doi:10.1186/1471-2199-7-3

  • Silver JD, Ritchie ME, Smyth GK (2009) Microarray background correction: maximum likelihood estimation for the normal-exponential convolution. Biostatistics 10:352–363. doi:10.1093/biostatistics/kxn042

    Article  PubMed  PubMed Central  Google Scholar 

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273. doi:10.1016/S1046-2023(03)00155-5

    Article  PubMed  CAS  Google Scholar 

  • Sobotkova L, Stepanek V, Plhackova K, Kyslik P (1996) Development of a high-expression system for penicillin G acylase based on the recombinant Escherichia coli strain RE3(pKA18). Enzyme Microb Technol 19:389–397

    Article  CAS  Google Scholar 

  • Stock JB, Waygood EB, Meadow ND, Postma PW, Roseman S (1982) Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257:14543–14552

  • Stouthamer AH (1973) Theoretical study on amount of ATP required for synthesis of microbial cell material. A Van Leeuw J Microb 39:545–565

    Article  CAS  Google Scholar 

  • Utrilla J, Licona-Cassani C, Marcellin E, Gosset G, Nielsen LK, Martinez A (2012) Engineering and adaptive evolution of Escherichia coli for D-lactate fermentation reveals GatC as a xylose transporter. Metab Eng 14:469–476. doi:10.1016/j.ymben.2012.07.007

    Article  PubMed  CAS  Google Scholar 

  • Vadyvaloo V, Smirnova IN, Kasho VN, Kaback HR (2006) Conservation of residues involved in sugar/H+ symport by the sucrose permease of Escherichia coli relative to lactose permease. J Mol Biol 358:1051–1059. doi:10.1016/j.jmb.2006.02.050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wettenhall JM, Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20:3705–3706. doi:10.1093/bioinformatics/bth449

    Article  PubMed  CAS  Google Scholar 

  • Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: Metabolic flux genealogy of several generations of lysine-producing corynebacteria. Appl Environ Microbiol 68:5843–5859. doi:10.1128/aem.68.12.5843-5859.2002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wong HH, Lee SY (1998) Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50:30–33. doi:10.1007/s002530051252

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Hua Q, Baba T, Mori H, Shimizu K (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84:129–144. doi:10.1002/bit.10692

    Article  PubMed  Google Scholar 

  • Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K (2011) Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Factories 10:67. doi:10.1186/1475-2859-10-67

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097–2103. doi:10.1007/s10529-008-9821-3

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366. doi:10.1007/s00253-007-1170-y

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10 % (w/v) sugar to D:(−)-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896. doi:10.1007/s10529-005-3899-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Australian Government’s overseas aid program (AusAID) and the Cooperative Research Centre for Sugar Industry Innovation through Biotechnology (CRC SIIB) for the funding. We thank Dr Katia Nones in the Microarray Facility of Institute of Molecular Biosciences, University of Queensland for her contribution in the microarray analysis, Dr Shana Jacob and Mr Michael Wang from Metabolomics Australia – Brisbane node for their assistance in metabolite analysis via HPLC and GC/MS. We thank Amanda Nouwens and Alun Jones from the proteomics facility at SCMB and IMB for their support with proteomics. JOK received financial support from the Australian Research Council (DE120101549)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens O. Krömer.

Additional information

Yalun Arifin, Colin Archer and SooA Lim contributed equally to this work and are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 135 kb)

ESM 2

(XLSX 363 kb)

ESM 3

(XLSX 1,133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arifin, Y., Archer, C., Lim, S. et al. Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation. Appl Microbiol Biotechnol 98, 9033–9044 (2014). https://doi.org/10.1007/s00253-014-5956-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5956-4

Keywords

Navigation