Skip to main content
Log in

Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayers CW (1956) Estimation of the higher fatty acids C7-C18. Anal Chim Acta 15(1):77–83. doi:10.1016/0003-2670(56)80014-7

    Article  CAS  Google Scholar 

  • Bader FG (1978) Analysis of double-substrate limited growth. Biotechnol Bioeng 20(2):183–202. doi:10.1002/bit.260200203

    Article  CAS  PubMed  Google Scholar 

  • Baker D (1964) Colorimetric method for determining free fatty acids in vegetable oils. J Am Oil Chem Soc 41(1):21. doi:10.1007/Bf02661895

    Article  Google Scholar 

  • Bergström S, Theorell H, Davide H (1946) On a metabolic product of Ps. pyocyanea, pyolipic acid, active against Mycobact. tuberculosis. Arkiv Kemi, Mineralogi och Geologi 23 A(13):1–12

    Google Scholar 

  • Borgos SEF, Bordel S, Sletta H, Ertesvag H, Jakobsen O, Bruheim P, Ellingsen TE, Nielsen J, Valla S (2013) Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling. BMC Syst Biol 7. doi:10.1186/1752-0509-7-19

  • Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99(7):2192–2199. doi:10.1016/j.biortech.2007.05.035

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Chen C, Riadi L, Ju L (2004) Modeling rhl quorum-sensing regulation on rhamnolipid production by Pseudomonas aeruginosa. Biotechnol Prog 20(5):1325–1331

    Article  CAS  PubMed  Google Scholar 

  • de Lima CJB, Ribeiro EJ, Servulo EFC, Resende MM, Cardoso VL (2009) Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl Biochem Biotechnol 152(1):156–168. doi:10.1007/s12010-008-8188-1

    Article  PubMed  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485(2–3):145–152

    Article  PubMed  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013. doi:10.1099/mic.0.26154-0

    Article  PubMed  Google Scholar 

  • Du HJ, Xu ZL, Shrout JD, Alber M (2011) Multiscale modeling of Pseudomonas aeruginosa swarming. Math Models Methods Appl Sci 21:939–954. doi:10.1142/S0218202511005428

    Article  PubMed  Google Scholar 

  • Eswari JS, Anand M, Venkateswarlu C (2013) Optimum culture medium composition for rhamnolipid production by Pseudomonas aeruginosa AT10 using a novel multi-objective optimization method. J Chem Technol Biotechnol 88(2):271–279. doi:10.1002/Jctb.3825

    Article  CAS  Google Scholar 

  • Gilbert EJ (1993) Pseudomonas lipases—biochemical-properties and molecular-coning. Enzym Microb Technol 15(8):634–645. doi:10.1016/0141-0229(93)90062-7

    Article  CAS  Google Scholar 

  • Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47(8):1207–1219. doi:10.1016/j.procbio.2012.04.018

    Article  CAS  Google Scholar 

  • Henkel M, Schmidberger A, Kühnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R (2013) Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 97(17):7607–7616. doi:10.1007/s00253-013-5024-5

    Article  CAS  PubMed  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song ZJ, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815. doi:10.1093/Emboj/Cdg366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391(5):1579–1590

    Article  CAS  PubMed  Google Scholar 

  • Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologs of Luxr and Luxl control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17(2):333–343. doi:10.1111/j.1365-2958.1995.mmi_17020333.x

    Article  CAS  PubMed  Google Scholar 

  • Lindhout T, Lau PCY, Brewer D, Lam JS (2009) Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology 155:3449–3460. doi:10.1099/Mic.0.030510-0

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Yuan XZ, Zhong H, Zeng GM, Liu ZF, Ma XL, Zhu YY (2013) Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation. J S-Cent Univ National 20(4):1015–1021. doi:10.1007/s11771-013-1578-8

    Article  CAS  Google Scholar 

  • Luong JHT (1987) Generalization of Monod kinetics for analysis of growth data with substrate-inhibition. Biotechnol Bioeng 29(2):242–248. doi:10.1002/bit.260290215

    Article  CAS  PubMed  Google Scholar 

  • Madan B, Mishra P (2010) Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl Microbiol Biotechnol 85(3):597–604. doi:10.1007/s00253-009-2131-4

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Ostrovsky P, Nunn DN (1999) LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34(2):317–326. doi:10.1046/j.1365-2958.1999.01601.x

    Article  CAS  PubMed  Google Scholar 

  • Mata-Sandoval J, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864:211–220

    Article  CAS  PubMed  Google Scholar 

  • Medina-Moreno SA, Jimenez-Islas D, Gracida-Rodriguez JN, Gutierrez-Rojas M, Diaz-Ramirez IJ (2011) Modeling rhamnolipids production by Pseudomonas aeruginosa from immiscible carbon source in a batch system. Int J Environ Sci Technol 8(3):471–482

    Article  CAS  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87(1):167–174. doi:10.1007/s00253-010-2513-7

    Article  PubMed  Google Scholar 

  • Mulligan C, Gibbs B (1993) Factors influencing the economics of biosurfactants. In: Kosaric N (ed) Biosurfactants: production–properties–applications. Surfactant science series, vol 48. Marcel Dekker, NY, pp 329–371

    Google Scholar 

  • Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:1–9

    Google Scholar 

  • Ochsner U, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61(9):3503–3506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira FJS, Vazquez L, de Campos NP, Franca FP (2008) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44(4):383–389

    Article  Google Scholar 

  • Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814

    CAS  PubMed  Google Scholar 

  • Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40(3):708–718

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by Pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67(7):3102–3109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid-chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693(1):7–13. doi:10.1016/0021-9673(94)01127-Z

    Article  CAS  PubMed  Google Scholar 

  • Schmidberger A, Henkel M, Hausmann R, Schwartz T (2013) Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol 97(13):5779–5791. doi:10.1007/s00253-013-4891-0

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Alford JA (1966) Inhibition of microbial lipases by fatty acids. J Appl Microbiol 14(5):699

    CAS  Google Scholar 

  • Soberón-Chávez G, Aguirre-Ramirez M, Ordonez L (2005) Is Pseudomonas aeruginosa only “sensing quorum”? Crit Rev Microbiol 31(3):171–182. doi:10.1080/10408410591005138

    Article  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959–964. doi:10.1038/35023079

    Article  CAS  PubMed  Google Scholar 

  • Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. Eur J Lipid Sci Technol 105(10):563–571. doi:10.1002/ejlt.200300816

    Article  CAS  Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76(1):23–34

    Article  PubMed  Google Scholar 

  • Verstraete W, Voets JP (1978) Evaluation of yield and maintenance coefficients, expressed in carbon units, for Pseudomonas fluorescens and Pseudomonas aeruginosa. Z Allg Mikrobiol 18(2):135–141. doi:10.1002/jobm.3630180208

    Article  CAS  PubMed  Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Microbial production of rhamnolipid biosurfactants. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190(9):3147–3154. doi:10.1128/jb.00080-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dipl.-Ing. Michaela Zwick (Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences) for excellent technical assistance. This work was financed by the Baden-Württemberg Stiftung as part of the Environmental Technology Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Henkel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henkel, M., Schmidberger, A., Vogelbacher, M. et al. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation. Appl Microbiol Biotechnol 98, 7013–7025 (2014). https://doi.org/10.1007/s00253-014-5750-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5750-3

Keywords

Navigation