Skip to main content
Log in

Modeling rhamnolipids production by Pseudomonas aeruginosa from immiscible carbon source in a batch system

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

A mathematical model to predict the rhamnolipids production by Pseudomonas aeruginosa from oleic acid in a two phase liquid-liquid batch reaction system, was developed in this study. The model was based on two theoretical assumptions: 1) the convective oleic acid mass transfer is coupled to a bioreaction in the aqueous liquid bulk, and 2) the volume of the immiscible oleic acid drops and the saturation concentration at the interface are a function of rhamnolipids production. The model was able to accurately predict the experimental growth of the Pseudomonas aeruginosa strain, and the rhamnolipids production data with oleic acid as carbon source. This mathematical approach indicated a high correspondence between the saturation dimensionless profiles of oleic acid at the interface and the experimental profiles of surface tension difference. This modeling approach may constitute a useful tool in the design and scaling-up of bioreactors applied to the production of biosurfactants with immiscible carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed, R. M. M.; Safi,Z N. M. D.; Köster, J.; de Beer, D.; El-Nahhal, Y.; Rullkötter J.; Garcia-Pichel, F., (2002). Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl. Environ. Microbiol., 68(4), 1674–1683 (10 pages).

    Article  CAS  Google Scholar 

  • Akhavan Sepahy, A.; Mazaheri Assadi, M.; Saggadian, V.; Noohi, A., (2005). Production of biosurfactant from Iranian oil fields by isolated Bacilli. Int. J. Environ. Sci. Tech., 1(4), 287–293 (7 pages).

    Article  Google Scholar 

  • Arulazhagan, P.; Vasudevan, N.; Yeom, I. T., (2010). Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int. J. Environ. Sci. Tech., 7(4), 639–652 (14 pages).

    CAS  Google Scholar 

  • Brezna, B.; Khan, A. A.; Cerniglia, C. E., (2003). Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol. Lett., 223(2), 177–183 (7 pages).

    Article  CAS  Google Scholar 

  • Bugg, T.; Foght, J. M.; Pickard, M. A.; Gray, M. R., (2000). Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluoresceins LP6a. Appl. Environ. Microbiol., 66(12), 5387–5392 (6 pages).

    Article  CAS  Google Scholar 

  • Cerniglia, C. E., (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2–3), 351–368 (18 pages).

    Article  CAS  Google Scholar 

  • Dore, S. Y.; Clancy, Q. E.; Rylee, S. M.; Kulpa, C. F.; (2003) Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol., 63(2), 194–199 (6 pages).

    Article  CAS  Google Scholar 

  • Golovlev, E.V.; (2001). Ecological Strategy of Bacteria: Specific Nature of the Problem. Microbiol., 70(4), 379–383 (5 pages).

    Article  CAS  Google Scholar 

  • Harayama, S.; Kasai, Y.; Hara, A., (2004). Microbial communities in oil-contaminated seawater. Curr. Opin. Biotech., 15(3), 205–214 (8 pages).

    Article  CAS  Google Scholar 

  • Haritash, A. K.; Kaushik, C. P.; (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater., 169(1–3), 1–15 (15 pages).

    Article  CAS  Google Scholar 

  • Hendrickx, B.; Junca, H.; Vosahlova, J.; Lindner, A.; Ruegg, I.; Bucheli-Witschel, M.; Faber, F.; Egli, T.; Mau, M.; Schlomann, M.; Brennerova, M.; Brenner, V.; Pieper, D. H.; Top, E. M.; Dejonghe, W.; Bastiaens, L.; Springael, D., (2006). Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J. Microbiol. Method., 64(2), 250–265 (16 pages).

    Article  CAS  Google Scholar 

  • Jain, R. K.; Kapur, M.; Labana, S.; Lal, B.; Sarma, P. M.; Bhattacharya, D.; Thakur, I. S., (2005). Microbial diversity: Application of microorganisms for the biodegradation of xenobiotics. Curr. Sci., 89(1), 101–112 (12 pages).

    CAS  Google Scholar 

  • Jennifer, M.; Debruyn.; Gary, S.; Sayler.; (2009). Microbial community structure and biodegradation activity of particle-associated bacteria in a coal tar contaminated Creek. Environ. Sci. Tech., 43(9), 3047–3053 (7 pages).

    Article  Google Scholar 

  • Johnsen, A. R.; Schmidt, S.; Hybholt, T. K.; Henriksen, S.; Jacobsen, C. S.; Andersen, O., (2007). Strong impact on the polycyclic aromatic hydrocarbon (PAH)-Degrading Community of a PAH-polluted soil but marginal effect on PAH degradation when priming with bioremediated soil dominated by mycobacteria. Appl. Environ. Microbiol., 73(5), 1474–1480 (7 pages).

    Article  CAS  Google Scholar 

  • Khan, Z.; Troquet, J.; Vachelard, C., (2005). Sample preparation and analytical techniques for determination of polyaromatic hydrocarbons in soils. Int. J. Environ. Sci. Tech., 2(3), 275–286 (8 pages).

    CAS  Google Scholar 

  • Kirk, J. L.; Beaudette, L. A.; Hart, M.; Moutoglis, P.; Klironomos, J. N.; Lee, H.; Trevors, J. T.; (2004). Methods of studying soil microbial diversity. J. Microbiol. Method., 58(2), 169–188 (20 pages).

    Article  CAS  Google Scholar 

  • Kördel, W.; Hund-Rinke., K., (2001). Ecotoxicological assessment of soils. Bioavailability from an ecotoxicological point of view. Stegmann, R. (Eds.), Treatment of contaminated soil. Fundamentals, analysis, applications. Springer, Berlin 161–180 (20 pages).

    Chapter  Google Scholar 

  • Krivobok, S.; Kuony, S.; Meyer, C.; Louwagie, M.; Willison, J. C.; Jouanneau, Y., (2003). Identification of Pyrene-Induced Proteins in Mycobacterium sp. Strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases. J. Bacteriol., 185(13), 3828–3841 (14 pages).

    Article  CAS  Google Scholar 

  • Kumar, M.; León, V.; Materano, A. D. S.; Ilzins, O. A.; (2007). A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tensio-active emulsifying agent. World J. Microbiol. Biotech., 23(2), 211–220 (10 pages).

    Article  CAS  Google Scholar 

  • Margesin, R.; Labbe, D.; Schinner, F.; Greer, C. W.; Whyte, L. G., (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and Pristine Alpine soils. Appl. Environ. Microbiol., 69(6), 3085–3092 (8 pages).

    Article  CAS  Google Scholar 

  • McKew, B. A.; Coulon, F.; Osborn, A. M.; Timmis, K. N.; McGenity, T. J., (2007). Determining the identity and roles of oil metabolizing marine bacteria from the Thames estuary, UK. Environ. Microbiol., 9(1), 165–176 (12 pages).

    Article  CAS  Google Scholar 

  • Moreda, J. M.; Arranz, A.; Fdez De Betono, S.; Cid, A.; Arranz, J. F., (1998). Chromatographic determination of aliphatic hydrocarbons and polyaromatic hydrocarbons (PAHs) in sewage sludge. Sci. Total Environ., 220(1), 33–43 (11 pages).

    Article  CAS  Google Scholar 

  • Naomi, L.; Steven, B.; Penn, K.; Methe, B.A.; Detrich, W. H.; (2009). Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles., 13(4), 679–685 (7 pages).

    Article  Google Scholar 

  • Neuman, G.; Comelissen, S.; van Breukelen, F.; Hunger, S.; Lippold, H.; Loffhagen, N.; Wick, L. Y.; Heipieper, H. J., (2006). Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl. Environ. Microbiol., 72(6), 4232–4238 (7 pages).

    Article  Google Scholar 

  • Nievas, M. L.; Commendatorea, M. G.; Esteves, J. L.; Bucal, V., (2008). Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J. Hazard. Mater., 154(1–3), 96–104 (11 pages).

    Article  CAS  Google Scholar 

  • Nievas, M. L.; Commendatore, M. G.; Olivera, N. L.; Esteves, J. L.; Bucala, V., (2006). Biodegradation of bilge waste from Patagonia with an indigenous microbial Community. Bioresour. Tech., 97(18), 2280–2290 (11 pages).

    Article  CAS  Google Scholar 

  • Nikolausz, M.; Kappelmeyer, U.; Székely, A.; Rusznyák, A.; Márialigeti, K.; Kästner M., (2008). Diurnal redox fluctuation and microbial activity in the rhizosphere of wetland plants. Eur. J. Soil Biol., 44(3), 324–333 (10 pages).

    Article  CAS  Google Scholar 

  • Santos, E. C.; Jacques, R. J. S.; Bento, F. M.; Peralba, M. C. R.; Selbach, P. A.; Sá, E. L. S.; Camargo, F. A. O., (2008). Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresour. Tech., 99(7), 2644–2649 (6 pages).

    Article  CAS  Google Scholar 

  • Sei, K.; Asano, K. I.; Tateishi, N.; Mori, K.; Ike, M.; Fujita, M., (1999). Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J. Biosci. Bioengg., 88(5), 542–550 (9 pages).

    Article  CAS  Google Scholar 

  • Székely, A. J.; Sipos, R.; Berta, B.; Vajna B.; Hajdú, C.; Márialigeti, K., (2009). DGGE and T-RFLP analysis of bacterial succession during Mushroom Compost Production and Sequence-aided T-RFLP Profile of Mature Compost. Microb. Ecol., 57(3), 522–533 (11 pages).

    Article  Google Scholar 

  • Teramoto, M.; Suzuki, M.; Okazaki, F.; Hatmanti, A.; Harayama, S.; (2009). Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology., 155, 3362–3370 (9 pages).

    Article  CAS  Google Scholar 

  • Torsvik, V.; Ovreas, L.; Thingstad, T. F., (2002). Prokaryotic diversity — Magnitude, dynamics, and controlling factors. Science, 296(5570), 1064–1066 (3 pages).

    Article  CAS  Google Scholar 

  • Wick, L. Y.; Pasche, N.; Bernasconi, S. M.; Pelz, O.; Harms, H., (2003). Characterization of multiple substrate utilization by anthracene degrading Mycobacterium frederiksbergense LB501T. Appl. Environ. Microbiol., 69(10), 6133–6142 (10 pages).

    Article  CAS  Google Scholar 

  • Yousefi Kebria, D. Y.; Khodadadi, A.; Ganjidoust, H.; Badkoubi, I.; Amoozegar, M. A., (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int. J. Environ. Sci. Tech., 6(3), 435–442 (8 pages).

    Google Scholar 

  • Yeates, C.; Gillings, M. R.; Davison, A. D.; Altavilla, N.; Veal, D. A.; (1998). Methods for microbial DNA extraction from soil for PCR amplification. Biologic. Proced. Online., 1(1), 40–47 (8 pages).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Díaz-Ramírez Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina-Moreno, S.A., Jiménez-Islas, D., Gracida-Rodríguez, J.N. et al. Modeling rhamnolipids production by Pseudomonas aeruginosa from immiscible carbon source in a batch system. Int. J. Environ. Sci. Technol. 8, 471–482 (2011). https://doi.org/10.1007/BF03326233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326233

Keywords

Navigation