Skip to main content
Log in

Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Quorum sensing affects the regulation of more than 300 genes in Pseudomonas aeruginosa, influencing growth, biofilm formation, and the biosynthesis of several products. The quorum sensing regulation mechanisms are mostly described in a qualitative character. Particularly, in this study, the kinetics of N-butyryl-homoserine lactone (C4-HSL) and rhamnolipid formation in P. aeruginosa PAO1 were of interest. In this system, the expression of the rhamnolipid biosynthesis genes rhlAB is directly coupled to the C4-HSL concentration via the rhl system. Batch cultivations in a bioreactor with sunflower oil have been used for these investigations. 3-oxo-dodecanoyl-homoserine lactone (3o-C12-HSL) displayed a lipophilic character and accumulated in the hydrophobic phase. Degradation of C4-HSL has been found to occur in the aqueous supernatant of the culture by yet unknown extracellular mechanisms, and production was found to be proportional to biomass concentration rather than by autoinduction mechanisms. Rhamnolipid production rates, as determined experimentally, were shown to correlate linearly with the concentration of autoinducer C4-HSL. These findings were used to derive a simple model, wherein a putative, extracellular protein with C4-HSL degrading activity was assumed (putative C4-HSL acylase). The model is based on data for catalytic efficiency of HSL-acylases extracted from literature (k cat/K m), experimentally determined basal C4-HSL production rates (q C4 - HSL basal), and two fitted parameters which describe the formation of the putative acylase and is therefore comparatively simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Hausmann R, Lepine F, Müller MM, Deziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Soberon-Chavez G (ed) Biosurfactants. Microbiology monographs. Springer, Berlin, pp 13–55

    Chapter  Google Scholar 

  • Anguige K, King JR, Ward JP (2006) A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math Biosci 203(2):240–276. doi:10.1016/j.mbs.2006.05.009

    Article  PubMed  CAS  Google Scholar 

  • Barbarossa MV, Kuttler C, Fekete A, Rothballer M (2010) A delay model for quorum sensing of Pseudomonas putida. Biosystems 102(2–3):148–156. doi:10.1016/j.biosystems.2010.09.001

    Article  PubMed  CAS  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis I.: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300

    PubMed  CAS  Google Scholar 

  • Camara M, Daykin M, Chhabra SR (1998) Detection, purification, and synthesis of N-acylhomoserine lactone quorum sensing signal molecules. Methods Microbiol 27:319–330. doi:10.1016/S0580-9517(08)70293-9

    Article  CAS  Google Scholar 

  • Chen F, Chen CC, Riadi L, Ju LK (2004) Modeling rhl quorum sensing regulation on rhamnolipid production by Pseudomonas aeruginosa. Biotechnol Prog 20(5):1325–1331. doi:10.1021/bp049928b

    Article  PubMed  CAS  Google Scholar 

  • Dockery JD, Keener JP (2000) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 00:1–22. doi:10.1006/bulm.2000.0205

    Google Scholar 

  • Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of l-rhamnose. German Patent US005658793A

  • Goryachev AB (2009) Design principles of the bacterial quorum sensing gene networks. Wiley Interdiscip Rev Syst Biol Med 1(1):45–60. doi:10.1002/Wsbm.27

    Article  PubMed  CAS  Google Scholar 

  • Goryachev AB, Toh DJ, Wee KB, Lee T, Zhang HB, Zhang LH (2005) Transition to quorum sensing in an Agrobacterium population: a stochastic model. PLoS Comput Biol 1(4):265–275. doi:10.1371/journal.pcbi.0010037

    Article  CAS  Google Scholar 

  • Henkel M, Müller MM, Kügler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47(8):1207–1219. doi:10.1016/j.procbio.2012.04.018

    Article  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song ZJ, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815. doi:10.1093/Emboj/Cdg366

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologs of Luxr and Luxl control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17(2):333–343. doi:10.1111/j.1365-2958.1995.mmi_17020333.x

    Article  PubMed  CAS  Google Scholar 

  • Melke P, Sahlin P, Levchenko A, Jonsson H (2010) A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol 6(6) doi:10.1371/journal.pcbi.1000819

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165

    Article  PubMed  CAS  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87(1):167–174. doi:10.1007/s00253-010-2513-7

    Article  PubMed  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181(4):1203–1210

    PubMed  CAS  Google Scholar 

  • Pesci EC, Iglewski BH (1997) The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5(4):132–134. doi:10.1016/S0966-842X(97)01008-1

    Article  PubMed  CAS  Google Scholar 

  • Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid-chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693(1):7–13. doi:10.1016/0021-9673(94)01127-Z

    Article  PubMed  CAS  Google Scholar 

  • Schmidberger A, Henkel M, Hausmann R, Schwartz T (2013) Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol doi:10.1007/s00253-013-4891-0

  • Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74(3):1673–1682. doi:10.1128/Iai.74.3.1673-1682.2006

    Article  PubMed  CAS  Google Scholar 

  • Soberon-Chavez G, Aguirre-Ramirez M, Ordonez L (2005) Is Pseudomonas aeruginosa only "sensing quorum"? Crit Rev Microbiol 31(3):171–182. doi:10.1080/10408410591005138

    Article  PubMed  CAS  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725. doi:10.1007/s00253-005-0150-3

    Article  PubMed  Google Scholar 

  • Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. Eur J Lipid Sci Tech 105(10):563–571. doi:10.1002/ejlt.200300816

    Article  CAS  Google Scholar 

  • Viretta AU, Fussenegger M (2004) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog 20:670–678. doi:10.1021/Bp034323l

    Article  PubMed  CAS  Google Scholar 

  • Wahjudi M, Papaioannou E, Hendrawati O, van Assen AHG, van Merkerk R, Cool RH, Poelarends GJ, Ouax WJ (2011) PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology 157:2042–2055. doi:10.1099/Mic.0.043935-0

    Article  PubMed  CAS  Google Scholar 

  • Wang LH, Weng LX, Dong YH, Zhang LH (2004) Specificity and enzyme kinetics of the quorum quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem 279(14):13645–13651. doi:10.1074/jbc.M311194200

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Dev Biol 21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001

    Article  CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191. doi:10.1016/j.mib.2009.01.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dipl.-Ing. Michaela Zwick (Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences) for excellent technical assistance and Dr. Gerald Brenner-Weiß and Dipl.-Ing. Michael Nusser (Karlsruhe Institute of Technology, Institute of Functional Interfaces) for the mass-spectrometrical analysis and identification of C4-HSL and 3o-C12-HSL. This work was financed by the Baden-Württemberg Stiftung as part of the Environmental Technology Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Henkel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkel, M., Schmidberger, A., Kühnert, C. et al. Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 97, 7607–7616 (2013). https://doi.org/10.1007/s00253-013-5024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5024-5

Keywords

Navigation