Skip to main content
Log in

Biosurfactant Production by Pseudomonas aeruginosa Grown in Residual Soybean Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors of 6 and 10 l capacities. A complete factorial experimental design was used, with the goal of optimizing the aeration rate (0.5, 1.0, and 1.5 vvm) and agitation speed (300, 550, and 800 rpm). Aeration was identified as the primary variable affecting the process, with a maximum rhamnose concentration occurring at an aeration rate of 0.5 vvm. At optimum levels, a maximum rhamnose concentration of 3.3 g/l, an emulsification index of 100%, and a minimum surface tension of 26.0 dynes/cm were achieved. Under these conditions, the biosurfactant production derived from using a mixture of waste frying soybean oil (WFSO) as a carbon source was compared to production when non-used soybean oil (NUSO), or waste soybean oils used to fry specific foods, were used. NUSO produced the highest level of rhamnolipids, although the waste soybean oils also resulted in biosurfactant production of 75–90% of the maximum value. Under ideal conditions, the kinetic behavior and the modeling of the rhamnose production, nutrient consumption, and cellular growth were established. The resulting model predicted data points that corresponded well to the empirical information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Makkar, R. S., & Cameotra, S. S. (2002). Applied Microbiology and Biotechnology, 58, 428–34.

    Article  CAS  Google Scholar 

  2. Banat, I. M., Samarah, N., Murad, M., Roene, R., & Banerju, S. (1991). Applied Microbiology and Biotechnology, 7, 80–88.

    CAS  Google Scholar 

  3. Lin, S. C., Sharma, M. M., & Georgiou, G. (1996). Biotechnology, 9, 138–145.

    Google Scholar 

  4. Nitschke, M., & Pastore, G. M. (2002). New Journal of Chemistry, 25, 772–776.

    CAS  Google Scholar 

  5. Reis, F. A. S. L., Servulo, E. F. C., & França, F. P. (2004). Applied Microbiology and Biotechnology, 115, 899–912.

    Google Scholar 

  6. Cameotra, S. S., & Makkar, R. S. (1998). Applied Microbiology and Biotechnology, 50, 520–529.

    Article  CAS  Google Scholar 

  7. Francy, D. S., Thomas, J. M., Raymond, R. L., & Ward, C. H. (1991). Journal of Industrial Microbiology & Biotechnology, 8, 237–246.

    CAS  Google Scholar 

  8. Mulligan, C. N. (2004). Environmental Pollution, 133, 183–198.

    Article  CAS  Google Scholar 

  9. Syldatk, C., Lang, S., & Wagner, F. (1985). Zeitschrift für Naturforsch, 46, 51–60.

    Google Scholar 

  10. Bodour, A. A., Drees, K. P., & Maier, M. R. (2003). Applied and Environmental Microbiology, 69, 3280–3287.

    Article  CAS  Google Scholar 

  11. Ochsner, A. U., Hembach, T., & Fiechter, A. (1996). Advances in Biochemical Engineering, Biotechnology, 53, 89–119.

    CAS  Google Scholar 

  12. Haba, E., Espuny, M. J., Buquets, M., & Manresa, A. (2000). Journal of Applied Microbiology, 88, 379–387.

    Article  CAS  Google Scholar 

  13. De Lima, C. J. B., De França, F. P., Sérvulo, E. F. C., Resende, M. M., & Cardoso, V. L. (2007). Applied Biochemistry and Biotechnology, 136–140, 463–470.

    Article  Google Scholar 

  14. Santos, A. S., Sampaio, A. P. W., Vasquez, G. S., Santa Anna, L. M., Pereira, N., & Freire, D. M. G. (2002). Applied Biochemistry and Biotechnology, 98–100, 1025–1035.

    Article  Google Scholar 

  15. Rainer, B. W. (1990). Chemical and Biochemical Engineering, 4, 185–196.

    CAS  Google Scholar 

  16. Marquardt, D. W. (1963). Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  17. Gill, S. (1951). Proceedings of the Cambridge Philological Society, 47, 96–108.

    Article  Google Scholar 

  18. Bailey, J. E., & Ollis, D. F. (1986). Biochemical engineering fundamentals (Paperback) (p. 4042nd ed.). Singapore: McGraw-Hill.

    Google Scholar 

  19. Luedeking, R., & Piret, E. L. (1959). Journal of Biochemical and Microbiological Technology and Engineering, 1, 393–412.

    Article  CAS  Google Scholar 

  20. APHA. American Public Health Association. (1989). Standard Methods for the Examination of Water and Wastewater. 17th ed (pp. 123). Washington DC.

  21. APHA. American Public Health Association. (1989). Standard Methods for the Examination of Water and Wastewater. 17th ed (pp.151). Washington DC.

  22. Normas Analíticas do Instituto Adolfo Lutz (1985). Métodos Químicos e Físicos para Análises de Alimentos, 1, 317–319.

    Google Scholar 

  23. Rahman, K. S. M., Rahaman, T. J., Mcclean, S., Marchant, R., & Banat, I. M. (2002). Biotechnology Progress, 18, 1277–1281.

    Article  CAS  Google Scholar 

  24. Cooper, D. G., & Goldenberg, B. G. (1987). Applied and Environmental Microbiology, 42, 224–229.

    Google Scholar 

  25. Reis, F. A. S. L., Sérvulo, E. F. C., & De França, F. (2004). Applied and Environmental Microbiology, 899(912), 113–116.

    Google Scholar 

  26. Mercadé, M. E., Manresa, A., Robert, M., Espuny, M. J., Andrés, C., & Guinea, J. (1993). Bioresource Technology, 43, 1–6.

    Article  Google Scholar 

  27. Benicasa, M., Contiero, J., Manresa, M. A., & Moraes, I. O. (2002). Journal of Engineering, 54, 283–288.

    Google Scholar 

  28. Rosen, M. J. (1989). Surfactants and interfacial phenomena p. 431. New York, USA: Wiley.

    Google Scholar 

  29. Banat, I., Makkar, R., & Cameotra, S. (2000). Applied Microbiology and Biotechnology, 53, 495–508.

    Article  CAS  Google Scholar 

  30. Jeff Wu, C. F., & Hamada, M. (2000). Experiments: Planning, analysis, and parameter design optimization. New York: Wiley.

    Google Scholar 

  31. Tyagi, V. K., & Vasishtha, A. K. (1996). Journal of the American Oil Chemists Society, 73, 499–506.

    Article  CAS  Google Scholar 

  32. Waltking, A. E., & Wessels, H. (1981). Journal of the Association Office Analytical Chemists, 64, 1329–1330.

    CAS  Google Scholar 

  33. Nawar, W. W. (1996). Food chemistry. New York: M. Dekker. 3, 225–319.

  34. Damy, P. C., & Jorge, N. (2003). Brazilian Journal of Food Technology, 6, 251–257.

    Google Scholar 

  35. Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61, 47–64.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Dr. Dália dos Prazeres Rodrigues (Curator of Instituto Oswaldo Cruz, RJ, Brazil) for carrying out the bacterial strain identification. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministério da Educação, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lima, C.J.B., Ribeiro, E.J., Sérvulo, E.F.C. et al. Biosurfactant Production by Pseudomonas aeruginosa Grown in Residual Soybean Oil. Appl Biochem Biotechnol 152, 156–168 (2009). https://doi.org/10.1007/s12010-008-8188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8188-1

Keywords

Navigation