Skip to main content
Log in

Activity assessment of microbial fibrinolytic enzymes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AbdeI-Naby MA, EI-Diwany AI, Shaker HM, Ismail A-MS (1992) Production and properties of fibrinolytic enzyme from Streptomyces sp. NRC 411. Wor J Microbiol Biotechnol 8:267–269

    Article  Google Scholar 

  • Abdel-Fattah AF, Ismail AS (1984) Purification and some properties of pure Cochliobolus lunatus fibrinolytic enzyme. Biotechnol Bioeng 26(5):407–411

    Article  PubMed  CAS  Google Scholar 

  • Agrebi R, Haddar A, Hajji M, Frikha F, Manni L, Jellouli K, Nasri M (2009) Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26 characterization and statistical media optimization. Can J Microbiol 55(9):1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Ahn MY, Hahn BS, Ryu KS (2003) Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles, Catharsius molossus. Thromb Res 112:339–347

    Article  PubMed  CAS  Google Scholar 

  • Astrup T, Mullertz S (1952) The fibrin plate method for estimating fibrinolytic activity. Arch Biochem 40:346

    Article  PubMed  CAS  Google Scholar 

  • Azuaga AI, Dobson CM, Mateo PL, Conejero-Lara F (2002) Unfolding and aggregation during the thermal denaturation of streptokinase. Eur J Biochem 269:4121–4133

    Article  PubMed  CAS  Google Scholar 

  • Barett AJ (1995) Proteolytic enzymes: aspartic and metallopeptidases. Methods Enzymol 248:183

    Article  Google Scholar 

  • Barlow GH, Marder VJ (1980) Plasma urokinase levels measured by chromogenic assay after infusions of tissue culture or urinary source material. Throm Res 18:431–437

    Article  CAS  Google Scholar 

  • Barta G (1966) Dyed fibrin plate assay of fibrinolysis. Can J Physiol Pharmacol 44(2):233–240

    Article  PubMed  CAS  Google Scholar 

  • Batomunkueva BP, Egorov NS (2001) Isolation, purification and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70(5):519–522

    Article  CAS  Google Scholar 

  • Beldarrain A, Lopez-Lacomba JL, Kutyshenko VP, Serrano R, Cortijo M (2001) Multidomain structure of a recombinant streptokinase. A differential scanning calorimetry study. J Protein Chem 20:9–17

    Article  PubMed  CAS  Google Scholar 

  • Bell PH, Dziobkowski CT, Englert ME (1974) A sensitive fluorometric assay for plasminogen, plasmin and streptokinase. Anal Biochem 61:200–208

    Article  PubMed  CAS  Google Scholar 

  • Bickford AF Jr, Sokolow M (1961) Fibrinolysis as related to the urea solubility of fibrin. Thrombos Diathes haemorrh (Stuttg) 5:480

    CAS  Google Scholar 

  • Billroth T (1874) Coccobacteria septica. Georg Reimer, Berlin, p 240

    Google Scholar 

  • Blix S (1962) The effectiveness of activators in clot lysis, with special reference to fibrinolytic therapy: a new method for determination of preformed clot lysis. Acta Med Scand 172:386

    Google Scholar 

  • Bode C, Runge M, Smalling RW (1996) The future of thrombolysis in the treatment of acute myocardial infarction. Eur Heart J 17:55–60

    Article  PubMed  Google Scholar 

  • Boxrud PD, Verhamme IMA, Fay WP, Bock PE (2001) Streptokinase triggers conformational activation of plasminogen through specific interactions of the amino-terminal sequence and stabilizes the active zymogen conformation. J Biol Chem 276:26084–26089

    Article  PubMed  CAS  Google Scholar 

  • Brockway WJ, Castellino FJ (1974) A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry 13:2063–2070

    Article  PubMed  CAS  Google Scholar 

  • Buckell M (1958) The effect of citrate on euglobulin methods of estimating fibrinolytic activity. J Clin Path 11:403

    Article  PubMed  CAS  Google Scholar 

  • Cartwright T (1974) The plasminogen activator of vampire bat saliva. Blood 43:317–326

    PubMed  CAS  Google Scholar 

  • Cha WS, Park SS, Kim SJ, Choi D (2010) Biochemical and enzymatic properties of a fibrinolytic enzyme from Pleorotus eryngii cultivated under solid-state conditions using corn cob. Bioresour Technol 101:6475–6481

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti R, Fearnley GR (1962) The fibrinolytic potential as a simple measure of spontaneous fibrinolysis. J Clin Path 15:228

    Article  PubMed  CAS  Google Scholar 

  • Chang AK, Kim HY, Park JE, Acharya P, Park IS, Yoon SM, You HJ, Hahm KS, Park JK, Lee JS (2005) Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 187(20):6909–6916

    Article  PubMed  CAS  Google Scholar 

  • Chang CT, Fan MH, Kuo FC, Sung HY (2000) Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48(8):3210–3216

    Article  PubMed  CAS  Google Scholar 

  • Chiang CJ, Chen HC, Chao Y, Tzen JTC (2005) Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J Agric Food Chem 53(12):4799–4804

    Article  PubMed  CAS  Google Scholar 

  • Chitte RR, Dey S (2000) Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett Appl Microbiol 31(6):405–410

    Article  PubMed  CAS  Google Scholar 

  • Chitte RR, Dey S (2002) Production of a fibrinolytic enzyme by thermophilic Streptomyces species. World J Microbiol Biotechnol 18(4):289–294

    Article  CAS  Google Scholar 

  • Choi HS, Sa YS (2000) Fibrinolytic and antithrombotic protease from Ganoderma lucidum. Mycologia 92:545–552

    Article  CAS  Google Scholar 

  • Choi HS, Sa YS (2001) Fibrinolytic and antithrombotic protease from Spirodela polyrhiza. Biosci Biotechnol Biochem 65:781–786

    Article  PubMed  CAS  Google Scholar 

  • Choi HS, Shin PH (1998) Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90(4):674–679

    Article  CAS  Google Scholar 

  • Choi NS, Chang KT, Jae Maeng P, Kim SH (2004) Cloning, expression, and fibrin(ogen)olytic properties of a subtilisin DJ-4 gene from Bacillus sp. DJ-4. FEMS Microbiol Lett 236(2):325–331

    Article  PubMed  CAS  Google Scholar 

  • Choi NS, Chung DM, Park CS, Ahn KH, Kim JS, Song JJ, Kim SH, Yoon BD, Kim MS (2010) Expression and identification of a minor extracellular fibrinolytic enzyme (Vpr) from Bacillus subtilis KCTC 3014. Biotechnol Bioprocess Eng 15(3):446–452

    Article  CAS  Google Scholar 

  • Choi NS, Song JJ, Chung DM, Kim YJ, Maeng PJ, Kim SH (2008) Purification and characterization of a novel thermoacid-stable fibrinolytic enzyme from Staphylococcus sp. strain AJ isolated from Korean salt-fermented Anchovy-joet. J Ind Microbiol Biotechnol 36:417–426

    Article  PubMed  CAS  Google Scholar 

  • Choi NS, Yoo KH, Hahm JH, Yoon KS, Chang KT, Hyun BH, Maeng PJ, Kim SH (2005) Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: produced by Bacillus sp. DJ-2 from Doen-Jang. J Microbiol Biotechnol 15(1):72–79

    CAS  Google Scholar 

  • Collen D (1998a) Engineered staphylokinase variants with reduced immunogenicity. Fibrinol Proteol 12:59–65

    Article  CAS  Google Scholar 

  • Collen D (1998b) Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med 4:279–284

    Article  PubMed  CAS  Google Scholar 

  • Collen D, Lijnen HR (2004) Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2(4):541–546

    Article  PubMed  CAS  Google Scholar 

  • Conejero-Lara K, Parrado J, Azuaga AI, Smith RAG, Ponting CP, Dobson CM (1996) Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance. Protein Sci 5:2583–2591

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Dong MS, Chen XH, Jiang M, Lv X, Yan G (2008) A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microbiol Biotechnol 24:483–489

    Article  CAS  Google Scholar 

  • Deepak V, Ilangovan S, Sampathkumar MV, Victoria MJ, Pasha S, Pandian S, Gurunathan S (2010) Medium optimization and immobilization of purified fibrinolytic URAK from Bacillus cereus NK1 on PHB nanoparticles. Enzyme Microbial Technol 47(6):297–304

    Article  CAS  Google Scholar 

  • Duffy MJ (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 48(8):1194–1197

    PubMed  CAS  Google Scholar 

  • Egorov NS, Kochetov GA, Khaidarova NV (1976) Isolation and properties of the fibrinolytic enzyme from the Actinomyces thermovulgaris cultural broth. Mikrobiologiia 45:455–459

    PubMed  CAS  Google Scholar 

  • Egorov NS, Prianishnikova NI, Al-Nuri MA, Aslanian RR (1985) Streptomyces spheroides M8-2 strain-a producer of extracellular proteolytic enzyme possessing fibrinolytic and thrombolytic action. Naucn Dokl Vyss Sk Biol Nauki 1:77–81

    Google Scholar 

  • El-Aassar SA (1995) Production and properties enzyme in solid state cultures of Fusarium pallidoroseum. Biotechnol Lett 17(9):943–948

    Article  CAS  Google Scholar 

  • El-Aassar SA, El-Badry HM, Abdel-Fattah AF (1990) The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl Microbiol Biotechnol 33(1):26–30

    Article  PubMed  CAS  Google Scholar 

  • Fearnley GR, Balmforth G, Fearnley E (1957) Evidence of a diurnal fibrinolytic rhythm; with a simple method of measuring natural fibrinolysis. Clin Sci 16:645

    PubMed  CAS  Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046

    Article  PubMed  CAS  Google Scholar 

  • Flute PT (1960) Proc. 7th Congr europ Soc Haemat. London part II, p 894

  • Fossum S, Hoem NO (1996) Urokinase and non-urokinase fibrinolytic activity in protease-inhibitor-deprived plasma, assayed by a fibrin micro-plate method. Immuno Pharmacol 32:119–121

    Article  CAS  Google Scholar 

  • Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197(3):1340–1347

    Article  PubMed  CAS  Google Scholar 

  • Gallimore MJ (1967) Effect of diluents on blood clot lysis. J Clin Path 20:234

    Article  PubMed  CAS  Google Scholar 

  • Gase K, Ellinger T, Malke H (1995) Complex transcriptional control of the streptokinase gene of Streptococcus equisimilis H46A. Mol Gen Genet 247:749–758

    Article  PubMed  CAS  Google Scholar 

  • Gerheim EB (1948) Staphylococcal coagulation and fibrinolysis. Nature 162:732

    Article  PubMed  CAS  Google Scholar 

  • Gidron E, Margalit R, Shalitin Y (1978) A rapid screening test for reduced fibrinolytic activity of plasma: streptokinase activated lysis time. J Clin Path 31:54–57

    Article  PubMed  CAS  Google Scholar 

  • Govind NS, Mehta B, Sharma M, Modi VV (1981) Protease and carotenogenesis in Blakeslea trispora. Phytochemistry 20:2483–2485

    Article  CAS  Google Scholar 

  • Grafe S, Ellinger T, Malke H (1996) Structural dissection and functional analysis of the complex promoter of the streptokinase gene from Streptococcus equisimilis H46A. Med Microbiol Immun 185:11–17

    Article  CAS  Google Scholar 

  • Hassanein WA, Kotb E, Awny NM, El-Zawahry YA (2011) Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42. J Biosci 36:773–779

    Article  PubMed  CAS  Google Scholar 

  • Haverkate F, Bradman P (1975) Progress in chemical fibrinolysis and thrombolysis, vol 1. Raven, New York, p 151

    Google Scholar 

  • Hawkey CM, Stafford JL (1964) A standard clot method for the assay of plasminogen activators, anti-activators, and plasmin. J Clin Path 17:175

    Article  PubMed  CAS  Google Scholar 

  • Howell M (1964) A method for assessing clot lysis. J Clin Path 17:310

    Article  PubMed  CAS  Google Scholar 

  • Hwang KJ, Choi KH, Kim MJ, Park CS, Cha J (2007) Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31 isolated from Korean traditional Jeot-gal. J Microbiol Biotechnol 17(9):1469–1476

    PubMed  CAS  Google Scholar 

  • Ikemura H, Inouye M (1988) In vitro processing of pro-subtilisin in Escherichia coli. J Biol Chem 263:12959–12963

    PubMed  CAS  Google Scholar 

  • Jackson KW, Tang J (1982) Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21:6620–6625

    Article  PubMed  CAS  Google Scholar 

  • Jeong YK, Kim JH, Gal SW, Kim JE, Park SS, Chung KT, Kim YH, Kim BW, Joo WH (2004) Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain A1. World J Microbiol Biotechnol 20:711–717

    Article  CAS  Google Scholar 

  • Jeong YK, Park JU, Baek H, Park SH, Kong IS, Kim DW, Joo WH (2001) Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J Microbiol Biotechnol 17:89–92

    Article  CAS  Google Scholar 

  • Jespers L, Vanwetswinkel S, Lijnen HR, Van Herzeele N, Van Hoef B, Demarsin E, Collen D, De Maeyer L (1999) Structural and functional basis of plasminogen activation by staphylokinase. Thromb Haemost 81:479–485

    PubMed  CAS  Google Scholar 

  • Jespersen J, Astrup T (1983) A study of the fibrin plate assay of fibrinolytic agents. Optimal conditions, reproducibility and precision. Haemost 13:301–315

    CAS  Google Scholar 

  • Kessner A, Troll W (1976) Fluorometric microassay of plasminogen activators. Arch Biochem Biophys 176:411–416

    Article  PubMed  CAS  Google Scholar 

  • Kho CW, Park SG, Cho S, Lee DH, Myung PK, Park BC (2005) Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr Purif 39:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kim DM, Lee SJ, Kim IC, Kim ST, Byun SM (2000) Asp41–His48 region of streptokinase is important in binding to a substrate plasminogen. Thromb Res 99:93–98

    Article  PubMed  CAS  Google Scholar 

  • Kim HC, Choi BS, Sapkota K, Kim S, Lee HJ, Yoo JC, Kim SJ (2011) Purification and characterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes. Process Biochem 46:1545–1553

    Article  CAS  Google Scholar 

  • Kim HK, Kim GT, Kim DK, Choi WA, Park SH, Jeong YK, Kong IS (1997) Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J Ferment Bioeng 84(4):307–312

    Article  CAS  Google Scholar 

  • Kim JB, Jung WH, Ryu JM, Lee YJ, Jung JK, Jang HW, Kim SW (2007) Identification of a fibrinolytic enzyme by Bacillus vallismortis and its potential as a bacteriolytic enzyme against Streptococcus mutans. Biotechnol Lett 29:605–610

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Kim YS (2001) Characterization of a metalloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci Biotech Biochem 65(2):356–362

    Article  CAS  Google Scholar 

  • Kim JH, Kim YS (1999) A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci Biotechnol Biochem 63:2130–2136

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kim JE, Choi BS, Park SE, Sapkota K, Kim S, Lee HH, Kim CS, Park Y, Kim MK, Kim YS, Kim SJ (2008) Purification and characterization of fibrinolytic metalloprotease from Perenniporia fraxinea mycelia. Mycol Res 112:990–998

    Article  PubMed  CAS  Google Scholar 

  • Kim SB, Lee DW, Cheigh CI, Choe EA, Lee SJ, Hong YH, Choi HJ, Pyun YR (2006) Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. J Ind Microbiol Biotechnol 33:436–444

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Choi NS (2000) Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp strain DJ-4 screened from Doen-Jang. Biosci Biotechnol Biochem 64:1722–1725

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62(7):1488–2482

    Google Scholar 

  • Klein G, Kullich W (2000) Short-term treatment of painful osteoarthritis of the knee with oral enzymes. A randomized, double-blind study versus diclofenac. Chem Drug Invest 19(1):15–23

    Article  CAS  Google Scholar 

  • Kline DL (1971) Thrombosis and bleeding disorders. Academic, New York, p 358

    Google Scholar 

  • Ko JH, Park DK, Kim IC, Lee SH, Byun SM (1995) High-level expression and secretion of streptokinase in Escherichia coli. Biotechnol Lett 17:1019–1024

    Article  CAS  Google Scholar 

  • Ko JH, Yan JP, Zhu L, Qi YP (2004) Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C Toxicol Pharmacol 137:65–74

    Article  PubMed  CAS  Google Scholar 

  • Kotb E (2012) Fibrinolytic bacterial enzymes with thrombolytic activity. Springer, Berlin

    Book  Google Scholar 

  • Kulseth MA, Helgeland LA (1993) Highly sensitive chromogenic microplate assay for quantification of rat and human plasminógen. Anal Biochem 210:314–317

    Article  PubMed  CAS  Google Scholar 

  • Kumada K, Onga T, Hoshino H (1994) The effect of natto possessing a high fibrinolytic activity in human plasma. Igaku To Seibutsugaku 128(3):117–119

    CAS  Google Scholar 

  • Laki K, Lorand L (1948) On the solubility of fibrin clots. Science 108:280

    Article  PubMed  CAS  Google Scholar 

  • Lassen M (1958) The estimation of fibrinolytic components by means of the lysis time method. Scand J Clin Lab Invest 10:384–389

    Article  PubMed  CAS  Google Scholar 

  • Lassen N (1953) Heat denaturation of plasminogen in the fibrin plate method. Acta Physiol Scand 27:371

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Bai HS, Park SS (2006) Purification and characterization of two novel fibrinolytic proteases from mushroom, Fomitella raxinea. J Microbiol Biotechnol 16:264–271

    CAS  Google Scholar 

  • Lee SK, Bae DH, Kwon TJ, Lee SB, Lee HH, Park JH, Heo S, Johnson MG (2001) Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J Microbiol Biotechnol 11(5):845–852

    CAS  Google Scholar 

  • Lee SY, Kim JS, Kim JE, Sapkota K, Shen MH, Kim S, Chun HS, Yoo JC, Choi HS, Kim MK, Kim SJ (2005) Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif 43(1):10–17

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ming SD, Xiao HC, Mei J, Xin L, Guijun Y (2008) A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microbiol Biotechnol 24:483–489

    Article  CAS  Google Scholar 

  • Li HP, Hu Z, Yuan JL, Fan HD, Chen W, Wang SJ, Zheng SS, Zheng ZL, Zou GL (2007) A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytother Res 21:1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Liu BY, Song HY (2002) Molecular cloning and expression of nattokinase gene in Bacillus subtilis. Acta Biochim Biophys Sin (Shanghai) 34(3):338–340

    CAS  Google Scholar 

  • Liu JG, Xing JM, Chang TS, Ma ZY, Liu HZ (2005) Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochem 40:2757–2762

    Article  CAS  Google Scholar 

  • Lopez-Sendon J, de Lopez SE, Bobadilla JF, Rubio R, Bermejo J, Delcan JL (1995) Cardiovascular pharmacology (XIII). The efficacy of different thrombolytic drugs in the treatment of acute myocardial infarct. Rev Esp Cardiol 48:407–439

    PubMed  CAS  Google Scholar 

  • Lu CL, Chen S, Chen SN (2010a) Purification and characterization of a novel fibrinolytic protease from Schizophyllum commune. J Food Drug Analysis 18:69–76

    CAS  Google Scholar 

  • Lu F, Lu Z, Bie X, Yao Z, Wang Y, Lu Y, Guo Y (2010b) Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3. Thromb Res 126:349–355

    Article  CAS  Google Scholar 

  • Lu F, Sun L, Lu Z, Bie X, Fang Y, Liu S (2007) Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes. Curr Microbiol 54:435–439

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane RG, Piling J (1946) Observations on fibrinolysis: plasminogen, plasmin, and antiplasmin content of human blood. Lancet 2:562

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Mahajan PM, Gokhale SV, Lele SS (2010) Production of nattokinase using B. natto NRRL 3666: media optimization, scale up and kinetic modeling. Food Sci Biotechnol 19:1593–1603

    Article  CAS  Google Scholar 

  • Malke H (1993) Polymorphism of the streptokinase gene-implications for the pathogenesis of poststreptococcal lomerulonephritis. Zentralbl Bakteriol 278:246–257

    Article  PubMed  CAS  Google Scholar 

  • Malke H, Roe B, Ferretti J (1985) Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 34:357–362

    Article  PubMed  CAS  Google Scholar 

  • Mander P, Cho SS, Simkhada JR, Choi YH, Yoo JC (2011) A low molecular weight chymotrypsin-like novel fibrinolytic enzyme from Streptomyces sp. CS624. Process Biochem 46:1449–1455

    Article  CAS  Google Scholar 

  • Markland FS (1998) Snake venoms and the hemostatic system. Toxicon 36:1749–1800

    Article  PubMed  CAS  Google Scholar 

  • Marsh NA, Gaffney NJ (1977) The rapid fibrin plate—a method for plasminogen activator assay. Thromb Haemostat 38:545–551

    CAS  Google Scholar 

  • Matsubara K, Hori K, Matsuura Y, Miyazawa K (1999) A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 52(6):993–999

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol Biochem Mol Biol 125(1):137–143

    Article  CAS  Google Scholar 

  • Matsubara K, Sumi H, Hori K, Miyazawa K (1998) Purification and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum. Comp Biochem Physiol Biochem Mol Biol 119:177–181

    Article  Google Scholar 

  • Mazzone A, Catalani M, Costanzo M, Drusian A, Mandoli A, Russo S, Guarini E, Vesperini G (1990) Evaluation of Serratia peptidase in acute or chronic inflammation of otorhinolaryngology pathology: a multicentre, doubleblind, randomized trial versus placebo. J Int Med Res 18:379–388

    PubMed  CAS  Google Scholar 

  • McCoy HE, Broder CC, Lottenberg R (1991) Streptokinases produced by pathogenic group C streptococci demonstrate species-specific plasminogen activation. J Infect Dis 164:515–521

    Article  PubMed  CAS  Google Scholar 

  • Mihara H, Sumi H, Akazawa K, Yoneds T, Mizumoto H (1983) Fibrinolytic enzyme extracted from the earthworm. J Thromb Haemost 50:258

    Google Scholar 

  • Millar WT, Smith JF (1983) The comparison of solid phase and fibrin plate methods for the measurement of plasminogen activators. Thromb Res 30:431–439

    Article  PubMed  CAS  Google Scholar 

  • Miyata K, Maejima K, Tomoda K, Isono M (1970) Serratia protease. Part I. Purification and general properties of the enzyme. Agricul Biolog Chemistry 34(2):310–318

    Article  CAS  Google Scholar 

  • Morozova EA, Falina NN, Denisova NP, Barkova LV, Psurtseva NV, Smartsev MA, Shitova VI (1982) Heterogeneity and substrate specificity of the fibrinolytic preparation from the fungus Flammulina velutipes. Biokhimiya 47:1181–1185

    CAS  Google Scholar 

  • Muller J, Malke H (1990) Duplication of the streptokinase gene in the chromosome of Streptococcus equisimilis H46A. FEMS Microbiol Lett 72:75–78

    Article  Google Scholar 

  • Nakahama K, Yoshimura K, Marumoto R, Kikuchi M, Lee IS, Hase T, Matsubara H (1986) Cloning and sequencing of Serratia protease gene. Nucleic Acids Res 14:5843–5855

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56(11):1869–1871

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuizen W, Wijngaards G, Groeneverd E (1978) Fluorogenic substrates for sensitive and differential estimation of urokinase and tissue plasminogen activator. Haemost 7:146–149

    CAS  Google Scholar 

  • Nihalani D, Kumar R, Rajagopal K, Sahni G (1998) Role of the amino-terminal region of streptokinase in the generation of a fully functional plasminogen activator complex probed with synthetic peptides. Protein Sci 7:637–648

    Article  PubMed  CAS  Google Scholar 

  • Nihalani D, Sahni G (1995) Streptokinase contains two independent plasminogen-binding sites. Biochem Biophys Res Commun 217:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Ninobe M, Hitomi Y, Fujii S (1980) A sensitive colorimetric assay for various proteases using naphthyl ester derivatives as substrates. J Biochem 87:779–783

    Google Scholar 

  • Noh KA, Kim DH, Choi NS, Kim SH (1999) Isolation of fibrinolytic enzyme producing strains from kimchi. Kor J Food Sci Technol 31:219–223

    Google Scholar 

  • Nonaka T, Dohmae N, Hashimoto Y, Takio K (1997) Amino acid sequences of metalloendopeptidases specific for acyl-lysine bonds from Grifola frondosa and Pleurotus ostreatus fruiting bodies. J Biol chemistry 272:30032–30039

    Article  CAS  Google Scholar 

  • Paik HD, Lee SK, Heo S, Kim SY, Lee H, Kwon TJ (2004) Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J Microbiol Biotechnol 14(4):829–835

    CAS  Google Scholar 

  • Park SE, Li MH, Kim JS, Sapkota K, Kim JE, Choi BS, Yoon YH, Lee JC, Lee HH, Kim CS, Kim SJ (2007) Purification and characterization of a fibrinolytic protease from a culture supernatant of Flammulina velutipes mycelia. Biosci Biotechnol Biochem 71:2214–2222

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Huang Q, Zhang RH, Zhang YZ (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol Biochem Mol Biol 134:45–52

    Article  Google Scholar 

  • Peng Y, Yang XJ, Xiao L, Zhang YZ (2004) Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Res Microbiol 155(3):167–173

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Zhang YZ (2002) Cloning and expression in E. coli of coding sequence of the fibrinolytic enzyme mature peptide from Bacillus amyloliquefaciens DC-4. Chin J Appl Environ Biol 8:285–289

    CAS  Google Scholar 

  • Petkov D, Christova E, Karadjova M (1973) Amidase activity of urokinase. I. Hydrolysis of alpha-N-acetyl-l-lysine p-nitroanilide. Thromb Diath Haemorrh 29:276–285

    PubMed  CAS  Google Scholar 

  • Pratap J, Rajamohan G, Dikshit KL (2000) Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol 53:469–475

    Article  PubMed  CAS  Google Scholar 

  • Ratnoff OD (1952) Studies on a proteolytic enzyme in human plasma. VIII. The effect of calcium and strontium ions on the activation of the plasma proteolytic enzyme. J Exp Med 96:319

    Article  CAS  Google Scholar 

  • Robinson BR, Liu L, Houng AK, Sazanova IY, Reed GL (2000) The streptokinase beta domain plays a critical role in activator complex formation and substrate docking. Circulation 102:490

    Article  Google Scholar 

  • Roch P (1979) Protein analysis of earthworm coelomic fluid: I. Polymorphic system of the natural hemolysin of Eisenia fetida andrei. Devel Comp Immun 3:599–608

    Article  CAS  Google Scholar 

  • Roche PL, Compeau JD, Schaw ST (1983) A rapid and highly sensitive solid-phase radioassay for plasminogen activators. Thromb Res 31:269–277

    Article  PubMed  CAS  Google Scholar 

  • Rosen G, Naor R, Kutner S, Sela MN (1994) Characterization of fibrinolytic activities of Treponema denticola. Infect Immun 62(5):1749–1754

    PubMed  CAS  Google Scholar 

  • Seo JH, Lee SP (2004) Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1. J Med Food 7(4):442–449

    Article  PubMed  CAS  Google Scholar 

  • Sherry S, Alkjaersig N, Fletcher AP (1966) Activity of plasmin and streptokinase-activator on substituted arginine and lysine esters. Throm Diath Haemorrh 16:18–31

    CAS  Google Scholar 

  • Sherry S, Lindemeyer RI, Fletcher AP, Alkjaersig N (1959) Studies on enhanced fibrinolytic activity in man. J Clin Invest 38:810

    Article  PubMed  CAS  Google Scholar 

  • Shi GY, Chang BI, Chen SM, Wu DH, Wu HL (1994) Function of streptokinase fragments in plasminogen activation. Biochem J 304:235–241

    PubMed  CAS  Google Scholar 

  • Simkhada JR, Mander P, Cho SS, Yoo JC (2010) A novel fibrinolytic protease from Streptomyces sp. CS684. Process Biochem 45:88–93

    Article  CAS  Google Scholar 

  • Smith RAG, Dupe RJ, English PD, Green J (1981) Fibrinolysis with acyl-enzymes—a new approach to thrombolytic therapy. Nature 290:505–508

    Article  PubMed  CAS  Google Scholar 

  • Somerville DA (1972) A technique for demonstrating fibrinolysis by cutaneous bacteria. J Clin Pathol 25:740–741

    Article  PubMed  CAS  Google Scholar 

  • Sumi H, Hamada H, Nakanishi K, Hiratani H (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 84(3):139–143

    Article  PubMed  CAS  Google Scholar 

  • Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43(10):1110–1111

    Article  PubMed  CAS  Google Scholar 

  • Sumi H, Nakajima N, Mihara H (1992) In vitro and in vivo fibrinolytic properties of nattokinase. Thromb Haemost 89:1267

    Google Scholar 

  • Sundram V, Nanda JS, Rajagopal K, Dhar J, Chaudhary A, Sahni G (2003) Domain truncation studies reveal that the streptokinase–plasmin activator complex utilizes long range protein–protein interactions with macromolecular substrate to maximize catalytic turnover. J Biol Chem 278:30569–30577

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Kondo K, Ichise H, Tsukamoto Y, Urano T, Umemura K (2003) Dietary supplementation with fermented soybeans suppresses intimal thickening. Nutrition 19:261–264

    Article  PubMed  CAS  Google Scholar 

  • Tao S, Peng L, Beihui L, Deming L, Zuohu L (1997) Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnol Lett 19(5):465–467

    Article  CAS  Google Scholar 

  • Tao S, Peng L, Beihui L, Deming L, Zuohu L (1998) Successive cultivation of Fusarium oxysporum on rice chaff for economic production of fibrinolytic enzyme. Bioprocess Eng 18(5):379–381

    CAS  Google Scholar 

  • Tharwat NA (2006) Purification and biochemical characterization of fibrinolytic enzyme produced by thermophilic fungus Oidiodendron flavum. Biotechnol 5(2):160–165

    Article  CAS  Google Scholar 

  • Ueda M, Kubo T, Miyatake K, Nakamura T (2007) Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Appl Microbiol Biotechnol 74:331–338

    Article  PubMed  CAS  Google Scholar 

  • Uesugi Y, Usuki H, Iwabuchi M, Hatanaka T (2011) Highly potent fibrinolytic serine protease from Streptomyces. Enzyme Microb Technol 48:7–12

    Article  PubMed  CAS  Google Scholar 

  • Wakeham N, Terzyan S, Zhai PZ, Loy JA, Tang J, Zhang XC (2002) Effects of deletion of streptokinase residues 48–59 on plasminogen activation. Protein Eng 15:753–761

    Article  PubMed  CAS  Google Scholar 

  • Walker ID, Davidson JF (1985) Blood coagulation and haemnostasis—a practical guide, 3rd edn. Churchill Livingstone, Edinburgh, p 229

    Google Scholar 

  • Wang CT, Ji BP, Li B, Nout R, Li PL, Ji H, Chen LF (2006) Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional douchi. J Ind Microbiol Biotechnol 33:750–758

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang M, Wang Y (1999a) Purification and characterization of a novel fibrinolytic enzyme from Streptomyces spp. Chin J Biotechnol 15(2):83–89

    PubMed  CAS  Google Scholar 

  • Wang JD, Narui T, Kurata H, Taeuchi K, Hashimoto T, Okuyama T (1989) Hematological studies on naturally occurring substances II. Eject of animal crude drugs on blood coagulation and fibrinolysis systems. Chem Pharm Bull 37:2236–2238

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Chen H, Liang T, Lin Y (2009) A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem 44:70–76

    Article  CAS  Google Scholar 

  • Wang SG, Reed GL, Hedstrom L (1999b) Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Biochemistry 38:5232–5240

    Article  PubMed  CAS  Google Scholar 

  • Wang SH, Zhang C, Yang YL, Diao M, Bai MF (2008a) Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547. World J Microbiol Biotechnol 24:475–482

    Article  CAS  Google Scholar 

  • Wang SL, Yang CH, Liang TW, Yen YH (2008b) Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresource Technol 99:3700–3707

    Article  CAS  Google Scholar 

  • Wang X, Lin X, Loy JA, Tang J, Zhang XC (1998) Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281:1662–1665

    Article  PubMed  CAS  Google Scholar 

  • Wong SL (1995) Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol 6:517–522

    Article  PubMed  CAS  Google Scholar 

  • Wong SL, Price CW, Goldfarb DS, Doi RH (1984) The subtilisin E gene of Bacillus subtilis is transcribed from a sigma-37 promoter in vivo. Proc Natl Acad Sci USA 81:1184–1188

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2001) The World Health report 2001. WHO, Geneva

    Google Scholar 

  • Wu B, Wu L, Chen D, Yang Z, Luo M (2009) Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J Ind Microbiol Biotechnol 36(3):451–459

    Article  PubMed  CAS  Google Scholar 

  • Wu DH, Shi GY, Chuang WJ, Hsu JM, Young KC, Chang CW, Wu HL (2001) Coiled coil region of streptokinase gamma-domain is essential for plasminogen activation. J Biol Chem 276:15025–15033

    Article  PubMed  CAS  Google Scholar 

  • Wu XC, Ye RQ, Duan YJ, Wong S-L (1998) Engineering of plasmin-resistant forms of streptokinase and their production in Bacillus subtilis: streptokinase with longer functional half-life. Appl Environ Microbiol 64:824–829

    PubMed  CAS  Google Scholar 

  • Xiao L, Zhang RH, Peng Y, Zhang YZ (2004) Highly efficient gene expression of a fibrinolytic enzyme (subtilisin DFE) in Bacillus subtilis mediated by the promoter of α-amylase gene from Bacillus amyloliquefaciens. Biotechnol Lett 26:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Xiao-Lan L, Lian-Xiang D, Fu-Ping L, Xi-Qun Z, Jing X (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl Microbiol Biotechnol 67(2):209–214

    Article  PubMed  CAS  Google Scholar 

  • Yazdani SS, Mukherjee KJ (2002) Continuous culture studies on the stability and expression of recombinant streptokinase in Escherichia coli. Bioprocess Biosyst Eng 24:341–346

    Article  CAS  Google Scholar 

  • Yongjun C, Wei B, Shujun J, Meizhi W, Yan J, Yan Y, Zhongliang Z, Goulin Z (2011) Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto. FEMS Microbiol Lett 325(2):155–161

    Article  PubMed  CAS  Google Scholar 

  • Yoon SJ, Yu MA, Sim GS, Kwon ST, Hwang JK, Shin JK, Yeo IH, Pyun YR (2002) Screening and characterization of microorganisms with fibrinolytic activity from fermented foods. J Microbiol Biotechnol 12(4):649–656

    Google Scholar 

  • Young KC, Shi GY, Chang YF, Chang BI, Chang LC, Lai MD, Chuang WJ, Wu HL (1995) Interaction of streptokinase and plasminogen-studied with truncated streptokinase peptides. J Biol Chem 270:29601–29606

    Article  PubMed  CAS  Google Scholar 

  • Zhai P, Wakeham N, Loy JA, Zhang XC (2003) Functional roles of streptokinase C-terminal flexible peptide in active site formation and substrate recognition in plasminogen activation. Biochemistry 42:114–120

    Article  PubMed  CAS  Google Scholar 

  • Zhang RH, Xiao L, Peng Y, Wang HY, Bai F, Zhang YZ (2005) Expression and characteristics of a novel fibrinolytic enzyme (subtilisin DFE) in Escherichia coli. Lett Appl Microbiol 41:190–195

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZL, Zuo ZY, Liu ZG, Tsai KC, Liu AF, Zou GL (2005) Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto A novel nucleophilic catalytic mechanism for nattokinase. J Mol Graphics 23:373–380

    Article  CAS  Google Scholar 

  • Zhu X, Ohta Y, Jordan F, Inouye M (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339:483–484

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman M, Quigley JP, Ashe B, Dron C, Goldfarb R, Troll W (1978) Direct fluorescent assay of urokinase and plasminogen activators of normal and malignant cells: kinetics and inhibitor profiles. Proc Nalt Acad Sci 75:750–753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Kotb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotb, E. Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol 97, 6647–6665 (2013). https://doi.org/10.1007/s00253-013-5052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5052-1

Keywords

Navigation