Skip to main content
Log in

Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

We have isolated a bacterium (TP-6) from the Indonesian fermented soybean, Tempeh, which produces a strong fibrinolytic protease and was identified as Bacillus subtilis. The protease (TPase) was purified to homogeneity by ammonium sulfate fractionation and octyl sepharose and SP sepharose chromatography. The N-terminal amino acid sequence of the 27.5 kDa enzyme was determined, and the encoding gene was cloned and sequenced. The result demonstrates that TPase is a serine protease of the subtilisin family consisting of 275 amino acid residues in its mature form. Its apparent K m and V max for the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-pNA were 259 μM and 145 μmol mg−1 min−1, respectively. The fibrinogen degradation pattern generated by TPase as a function of time was similar to that obtained with plasmin. In addition, N-terminal amino acid sequence analysis of the fibrinogen degradation products demonstrated that TPase cleaves Glu (or Asp) near hydrophobic acids as a P1 site in the α- and β-chains of fibrinogen to generate fragments D′, E′, and D′ similar to those generated by plasmin. On plasminogen-rich fibrin plates, TPase did not seem to activate fibrin clot lysis. Moreover, the enzyme converted the active plasminogen activator inhibitor-1 to the latent form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Astrupt T, Müllertz S (1952) The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 40:346–351

    Article  Google Scholar 

  2. Backes BJ, Harris JL, Leonetti F, Craik CS, Ellman JA (2000) Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat Biotech 18:187–193

    Article  CAS  Google Scholar 

  3. Baker WF (2002) Thrombolytic therapy: clinical application. Thromb Hemost 8:291–314

    Article  CAS  Google Scholar 

  4. Brown JH, Volkmann N, Jun G, Henschen-Edman AH, Cohen C (2000) The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci USA 97:85–90

    Article  CAS  Google Scholar 

  5. Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:203–222

    CAS  Google Scholar 

  6. Chang CT, Fan MH, Kuo FC, Sung HY (2000) Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48:3210–3216

    Article  CAS  Google Scholar 

  7. Cleary S, Mulkerrin MG, Kelley RF (1989) Purification and characterization of tissue plasminogen activator kringle-2 domain expressed in Escherichia coli. Biochemistry 28:1884–1891

    Article  CAS  Google Scholar 

  8. Drapeau GR, Boily Y, Houmard J (1972) Purification and properties of an extracellular protease of Staphylococcus aureus. J Biol Chem 247:6720–6726

    CAS  Google Scholar 

  9. French JK, Hyde TA, Patel H, Amos DJ, McLaughlin SC, Webber BJ, White HD (1999) Survival 12 years after randomization to streptokinase: the influence of thrombolysis in myocardial infarction flow at three to four weeks. J Am Coll Cardiol 34:62–69

    Article  CAS  Google Scholar 

  10. Fujita M, Nomura K, Hong K, Ito K, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197:1340–1347

    Article  CAS  Google Scholar 

  11. Henschen A (1983) On the structure of functional sites in fibrinogen. Thromb Res Suppl 5:27–39

    Article  CAS  Google Scholar 

  12. Karayadi D, Lukito W (2000) Functional food and contemporary nutrition-health paradigm: Tempeh and its potential beneficial effects in disease prevention and treatment. Nutrition 16:679

    Google Scholar 

  13. Kim WK, Choi KH, Kim YT, Park HH, Choi JY, Lee YS, Oh HI, Kwon IB, Lee SY (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11–4 screened from Chungkook-jang. Appl Environ Microbiol 62:2482–2488

    CAS  Google Scholar 

  14. Kunitz M (1947) Crystalline soybean trypsin inhibitor II. General properties. J Gen Physiol 30:291–310

    Article  CAS  Google Scholar 

  15. Kunst F et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  17. Lee HJ, Im H (2003) Purification of recombinant plasminogen activator-1 in the active conformation by refolding from inclusion bodies. Protein Expr Purif 31:99–107

    Article  CAS  Google Scholar 

  18. Lijnen HR, Van Hoef B, Collen D (1993) Interaction of staphylokinase with different molecular forms of plasminogen. Eur J Biochem 211:91–97

    Article  CAS  Google Scholar 

  19. Marder VJ, Landskroner K, Novokhatny V, Zimmerman TP, Kong M, Kanouse JJ, Jesmok G (2001) Plasmin induces local thrombolysis without causing hemorrhage: a comparison with tissue plasminogen activator in the rabbit. Thromb Haemost 86:739–745

    CAS  Google Scholar 

  20. McGrath KG, Zeffren B, Alexander J, Patterson R (1985) Allergic reactions to streptokinase consistent with anaphylactic or antigen–antibody complex-mediated damage. J Allergy Clin Immunol 76:453–457

    Article  CAS  Google Scholar 

  21. Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of subtilisin NAT gene, aprT, of Bacillus subtilis (natto). Biosci Biotech Biochem 56:1869–1871

    CAS  Google Scholar 

  22. Pannell R, Gurewich V (1987) Activation of plasminogen by single-chain urokinase or by two-chain urokinase—a demonstration that single-chain urokinase has a low catalytic activity (pro-urokinase). Blood 69:22–26

    CAS  Google Scholar 

  23. Schleuning WD (2001) Vampire bat plasminogen activator DSPA-alpha-1 (desmoteplase): a thrombolytic drug optimized by natural selection. Haemostasis 31:118–122

    Article  CAS  Google Scholar 

  24. Sumi H, Toki N, Sasaki K, Robbins KC (1980) Oral administration of urokinase. Thromb Res 20:711–714

    Article  CAS  Google Scholar 

  25. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43:1110–1111

    Article  CAS  Google Scholar 

  26. Sumi H, Hamada H, Nakanishi K, Hiratani H (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of natokinase. Acta Haematol 84:139–143

    Article  CAS  Google Scholar 

  27. Thomson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  28. Torr SR, Nachowiak DA, Fujii S, Sobel BE (1992) Plasminogen steal and clot lysis. J Am Coll Cardiol 19:1085–1090

    Article  CAS  Google Scholar 

  29. Urano T, Ihara H, Umemura K, Suzuki Y, Oike M, Akita S, Tsukamoto Y, Suzuki I, Takada A (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276:24690–24696

    Article  CAS  Google Scholar 

  30. Vasantha N, Thomson LD, Rhodes C, Banner C, Nagle J, Filpula D (1984) Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 159:811–819

    CAS  Google Scholar 

  31. Verstraete M (2000) Third-generation thrombolytic drugs. Am J Med 109:52–58

    Article  CAS  Google Scholar 

  32. Walker JB, Nesheim ME (1999) The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J Biol Chem 274:5201–5212

    Article  CAS  Google Scholar 

  33. Weisberg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Google Scholar 

  34. Yoshimoto T, Oyama H, Honda T, Tone H, Takeshita T, Kamiyama T, Tsuru D (1988) Cloning and expression of subtilisin amylosacchariticus gene. J Biochem 103:1060–1065

    CAS  Google Scholar 

Download references

Acknowledgements

This work [R11–1994-03405001-0] was supported by the Korea Science and Engineering Foundation (KOSEF). We gratefully acknowledge Prof. Jerry Eichler for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ryang Pyun.

Additional information

Seong-Bo Kim and Dong-Woo Lee contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SB., Lee, DW., Cheigh, CI. et al. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. J IND MICROBIOL BIOTECHNOL 33, 436–444 (2006). https://doi.org/10.1007/s10295-006-0085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0085-4

Keywords

Navigation