Skip to main content
Log in

Characterization of a newly synthesized carbonyl reductase and construction of a biocatalytic process for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with high space-time yield

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg−1. The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min−1 mg−1, respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous–organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3 % and e.e. of 99 % was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP+ to (S)-CHBE were 26.5 mmol L−1 h−1 g−1 DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abida A, Shah AUQ, Aliya R, Samina I, Abid A (2009) Calcium alginate: a support material for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS. WASJ 7:1281–1286

    Google Scholar 

  • An M, Cai P, Yan M, Hao N, Wang S, Liu H, Li Y, Xu L (2012) A novel reductase from Candida albicans for the production of ethyl (S)-4-chloro-3-hydroxybutanoate. Biosci Biotechnol Biochem 76:1210–1212

    CAS  PubMed  Google Scholar 

  • Bhattacharyya MS, Singh A, Banerjee UC (2010) Immobilization of intracellular carbonyl reductase from Geotrichum candidum for the stereoselective reduction of 1-naphthyl ketone. Bioresour Technol 101:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed Engl 43:788–824

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Mi L, Ye Q, Zang GL, Yan M, Wang Y, Zhang YY, Li XM, Xu L, Xiong JA, Ouyang PK, Ying HJ (2011) Purification and characterization of a novel NADH-dependent carbonyl reductase from Pichia stipitis involved in biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate. Bioresour Technol 102:1733–1739

    Article  CAS  PubMed  Google Scholar 

  • Engelking H, Pfaller R, Wich G, Weuster-Botz D (2004) Stereoselective reduction of ethyl 4-chloro acetoacetate with recombinant Pichia pastoris. Tetrahedron-Asymmetr 15:3591–3593

    Article  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658

    Article  CAS  PubMed  Google Scholar 

  • Forrest GL, Gonzalez B (2000) Carbonyl reductase. Chem Biol Interact 129:21–40

    Article  CAS  PubMed  Google Scholar 

  • Hoff BH, Anthonsen T (1999) Lipase-catalyzed resolution of esters of 4-chloro-3-hydroxybutanoic acid: effects of the alkoxy group and solvent on the enantiomeric ratio. Tetrahedron-Asymmetr 10:1401–1412

    Article  CAS  Google Scholar 

  • Hoffmann F, Maser E (2007) Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the shortchain dehydrogenase/reductase superfamily. Drug Metab Rev 39:87–144

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Asako H, Banno K, Makino Y, Shinohara M, Dairi T, Wakita R, Shimizu M (2004) Purification and characterization of NADPH-dependent aldo-keto reductase specific for beta-keto esters from Penicillium citrinum, and production of methyl (S)-4-bromo-3-hydroxybutyrate. Appl Microbiol Biotechnol 66:53–62

    Article  CAS  PubMed  Google Scholar 

  • Kaliaperumal T, Kumar S, Gummadi SN, Chadha A (2010) Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxybutanoate using Candida parapsilosis ATCC 7330. J Ind Microbiol Biotechnol 37:159–165

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Hoshino-Hasegawa A, Thiwthong R, Higuchi N, Ishige T, Shimizu S (2006) Gene cloning of an NADPH-dependent menadione reductase from Candida macedoniensis, and its application to chiral alcohol production. Enzyme Microb Technol 38:944–951

    Article  CAS  Google Scholar 

  • Kataoka M, Sakai H, Morikawa T, Katoh M, Miyoshi T, Shimizu S, Yamada H (1992) Characterization of aldehyde reductase of Sporobolomyces Salmonicolor. Biochimica Et Biophysica Acta 1122:57–62

    Article  CAS  PubMed  Google Scholar 

  • Kita K, Kataoka M, Shimizu S (1999) Diversity of 4-chloroacetoacetate ethyl ester-reducing enzymes in yeasts and their application to chiral alcohol synthesis. J Biosci Bioeng 88:591–598

    Article  CAS  PubMed  Google Scholar 

  • Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron-Asymmetr 20:513–557

    Article  CAS  Google Scholar 

  • Morikawa S, Nakai T, Yasohara Y, Nanba H, Kizaki N, Hasegawa J (2005) Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols. Biosci Biotechnol Biochem 69:544–552

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Xiao R, Xu Y, Montelione GT (2011) Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones. Org Biomol Chem 9:4070–4078

    Article  CAS  PubMed  Google Scholar 

  • Pan JL, Syu MJ (2005) Kinetic study on substrate and product inhibitions for the formation of 7-amino-3-deacetoxy cephalosporanic acid from cephalosporin G by immobilized penicillin G acylase. Biochem Eng J 23:203–210

    Article  CAS  Google Scholar 

  • Rao CS, Madhavendra SS, Rao RS, Hobbs PJ, Prakasham RS (2008) Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized Bacillus circulans (MTCC 6811) using overall evaluation criteria. Appl Biochem Biotechnol 150:65–83

    Article  CAS  Google Scholar 

  • Roth BD (2002) The discovery and development of atorvastatin, a potent novel hypolipidemic agent. Prog Med Chem 40:1–22

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW. (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp A2.2

  • Saratani Y, Uheda E, Yamamoto H, Nishimura A, Yoshizako F (2003) Purification and properties of a carbonyl reductase involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate from Cylindrocarpon sclerotigenum IFO 31855. Biosci Biotechnol Biochem 67:1417–1420

    Article  CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Soni P, Banerjee UC (2005) Biotransformations for the production of the chiral drug (S)-Duloxetine catalyzed by a novel isolate of Candida tropicalis. Appl Microbiol Biotechnol 67:771–777

    Article  CAS  PubMed  Google Scholar 

  • Sundby E, De Zotti M, Anthonsen T (2003) The enantioselectivity of reduction of ethyl 4-halo-3-oxobutanoate catalyzed by Geotrichum candidum depends on the cofactor. J Mol Catal B-Enzym 21:63–66

    Article  CAS  Google Scholar 

  • Wada M, Kataoka M, Kawabata H, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1998) Purification and characterization of NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from Candida magnoliae. Biosci Biotechnol Biochem 62:280–285

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kawabata H, Kataoka M, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1999) Purification and characterization of an aldehyde reductase from Candida magnoliae. J Mol Catal B-Enzym 6:333–339

    Article  CAS  Google Scholar 

  • Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH (2011) Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresour Technol 102:7023–7028

    Article  CAS  PubMed  Google Scholar 

  • Xu ZN, Fang LM, Lin JP, Jiang XX, Liu Y, Cen PL (2006) Efficient bioreduction of ethyl 4-chloro-3-oxobutanoate to (S)-4-chloro-3-hydrobutanoate by whole cells Candida magnoliae in water/n-butyl acetate two-phase system. Biotechnol Bioprocess Eng 11:48–53

    Article  CAS  Google Scholar 

  • Yamamoto H, Kimoto N, Matsuyama A, Kobayashi Y (2002) Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3-hydroxybutanoate from Kluyveromyces lactis. Biosci Biotechnol Biochem 66:1775–1778

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Mitsuhashi K, Kimoto N, Matsuyama A, Esaki N, Kobayashi Y (2004) A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate. Biosci Biotechnol Biochem 68:638–649

    Article  CAS  PubMed  Google Scholar 

  • Yasohara Y, Kizaki N, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Stereoselective reduction of alkyl 3-oxobutanoate by carbonyl reductase from Candida magnoliae. Tetrahedron-Asymmetr 12:1713–1718

    Article  CAS  Google Scholar 

  • Ye Q, Cao H, Zang GL, Mi L, Yan M, Wang Y, Zhang YY, Li XM, Li JA, Xu L, Xiong JA, Ouyang PK, Ying HJ (2010) Biocatalytic synthesis of (S)-4-chloro-3-hydroxybutanoate ethyl ester using a recombinant whole-cell catalyst. Appl Microbiol Biotechnol 88:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Ouyang P, Ying H (2011) A review-biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives. Appl Microbiol Biotechnol 89:513–522

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Yan M, Yao Z, Xu L, Cao H, Li ZJ, Chen Y, Li SY, Bai JX, Xiong J, Ying HJ, Ouyang PK (2009) A new member of the short-chain dehydrogenases/reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresour Technol 100:6022–6027

    Article  CAS  PubMed  Google Scholar 

  • You ZY, Liu ZQ, Zheng YG, Shen YC (2013) Characterization and application of a newly synthesized 2-deoxyribose-5-phosphate aldolase. J Ind Microbiol Biotechnol 40:29–39

    Article  CAS  PubMed  Google Scholar 

  • Yu HL, Xu JH, Lu WY, Lin GQ (2009) Discovery and utilization of biocatalysts for chiral synthesis: an overview of Chinese scientists research and development. Adv Biochem Eng Biotechnol 113:1–31

    CAS  PubMed  Google Scholar 

  • Zhang RZ, Geng YW, Xu Y, Zhang WC, Wang SS, Xiao R (2011) Carbonyl reductase SCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity. Bioresour Technol 102:483–489

    Article  CAS  PubMed  Google Scholar 

  • Zhang RZ, Xu Y, Sun Y, Zhang WC, Xiao R (2009) Ser67Asp and His68Asp substitutions in Candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Appl Environ Microbiol 75:2176–2183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The supports of this work by the National Basic Research Program of China (973 Program) (No. 2011CB710800), Natural Science Foundation of Zhejiang Province (No. R3110155) and Qianjiang Talent Project of Zhejiang Province are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, ZY., Liu, ZQ. & Zheng, YG. Characterization of a newly synthesized carbonyl reductase and construction of a biocatalytic process for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with high space-time yield. Appl Microbiol Biotechnol 98, 1671–1680 (2014). https://doi.org/10.1007/s00253-013-5042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5042-3

Keywords

Navigation