Skip to main content
Log in

Metabolic reconstruction and flux analysis of industrial Pichia yeasts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P. stipitis is capable of assimilating xylose to produce ethanol under oxygen-limited conditions. To harness these characteristics for biotechnological applications, it is highly required to characterize their metabolic behavior. Recently, following the genome sequencing of these two Pichia species, genome-scale metabolic networks have been reconstructed to model the yeasts’ metabolism from a systems perspective. To date, there are three genome-scale models available for each of P. pastoris and P. stipitis. In this mini-review, we provide an overview of the models, discuss certain limitations of previous studies, and propose potential future works that can be conducted to better understand and engineer Pichia yeasts for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott DA, Zelle RM, Pronk JT, van Maris AJ (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123–1136. doi:10.1111/j.1567-1364.2009.00537.x

    Article  CAS  Google Scholar 

  • Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524. doi:10.1007/s10529-008-9728-z

    Article  CAS  Google Scholar 

  • Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155–164. doi:10.1016/j.ymben.2004.12.003

    Article  CAS  Google Scholar 

  • Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R (2012) Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 11:27. doi:10.1186/1475-2859-11-27

    Article  CAS  Google Scholar 

  • Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D (2008) Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100(1):177–183. doi:10.1002/bit.21763

    Article  CAS  Google Scholar 

  • Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:141. doi:10.1186/1752-0509-4-141

    Article  Google Scholar 

  • Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5):e1000082. doi:10.1371/journal.pcbi.1000082

    Article  Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738. doi:10.1038/nprot.2007.99

    Article  CAS  Google Scholar 

  • Carnicer M, Baumann K, Toplitz I, Sanchez-Ferrando F, Mattanovich D, Ferrer P, Albiol J (2009) Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Fact 8:65. doi:10.1186/1475-2859-8-65

    Article  Google Scholar 

  • Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J (2012) Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol 6:24. doi:10.1186/1752-0509-6-24

    Article  CAS  Google Scholar 

  • Celik E, Calik P, Oliver SG (2010) Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnol Bioeng 105(2):317–329. doi:10.1002/bit.22543

    Article  CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    Article  CAS  Google Scholar 

  • Chung BK, Lee DY (2009) Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst Biol 3(1):117. doi:10.1186/1752-0509-3-117

    Article  Google Scholar 

  • Chung BK, Lee DY (2012) Computational codon optimization of synthetic gene for protein expression. BMC Syst Biol 6(1):134. doi:10.1186/1752-0509-6-134

    Article  CAS  Google Scholar 

  • Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee DY (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 9:50. doi:10.1186/1475-2859-9-50

    Article  Google Scholar 

  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27(6):561–566. doi:10.1038/nbt.1544

    Article  Google Scholar 

  • Dwek RA, Butters TD, Platt FM, Zitzmann N (2002) Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov 1(1):65–75. doi:10.1038/nrd708

    Article  CAS  Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130. doi:10.1038/84379

    Article  CAS  Google Scholar 

  • Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349. doi:10.1016/j.mib.2010.03.003

    Article  CAS  Google Scholar 

  • Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143. doi:10.1038/nrmicro1949

    CAS  Google Scholar 

  • Fiaux J, Cakar ZP, Sonderegger M, Wuthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2(1):170–180

    Article  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361

    CAS  Google Scholar 

  • Goldberg K, Schroer K, Lutz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Appl Microbiol Biotechnol 76(2):249–255. doi:10.1007/s00253-007-1005-x

    Article  CAS  Google Scholar 

  • Grootjen DRJ, Jansen ML, van der Lans RGJM, Luyben KCAM (1991) Reactors in series for the complete conversion of glucose/xylose mixtures by Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb Technol 13(10):828–833. doi:10.1016/0141-0229(91)90067-k

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16(11):933–943. doi:10.1016/0141-0229(94)90002-7

    Article  Google Scholar 

  • Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM (2011) Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Fact 10:4. doi:10.1186/1475-2859-10-4

    Article  CAS  Google Scholar 

  • Inan M, Meagher MM (2001) Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng 92(6):585–589. doi:10.1016/S1389-1723(01)80321-2

    CAS  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63(5):495–509. doi:10.1007/s00253-003-1450-0

    Article  CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25(3):319–326. doi:10.1038/nbt1290

    Article  CAS  Google Scholar 

  • Kim PJ, Lee DY, Kim TY, Lee KH, Jeong H, Lee SY, Park S (2007) Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc Natl Acad Sci U S A 104(34):13638–13642. doi:10.1073/pnas.0703262104

    Article  CAS  Google Scholar 

  • Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92(6):711–728. doi:10.1002/bit.20645

    Article  CAS  Google Scholar 

  • Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H (2011) High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol 154(4):312–320. doi:10.1016/j.jbiotec.2011.04.014

    Article  Google Scholar 

  • Kurtzman C, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51(1):2–14. doi:10.1007/s10267-009-0011-5

    Article  CAS  Google Scholar 

  • Lakshmanan M, Koh G, Chung BK, Lee DY (2012) Software applications for flux balance analysis. Brief Bioinform. doi:10.1093/bib/bbs069

  • Lee DY, Yun H, Park S, Lee SY (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19(16):2144–2146

    Article  CAS  Google Scholar 

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23(7):349–358. doi:10.1016/j.tibtech.2005.05.003

    Article  CAS  Google Scholar 

  • Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149. doi:10.1038/msb4100196

    Article  CAS  Google Scholar 

  • Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142(2):105–124

    Article  CAS  Google Scholar 

  • Liu T, Zou W, Liu L, Chen J (2012) A constraint-based model of Scheffersomyces stipitis for improved ethanol production. Biotechnol Biofuels 5(1):72. doi:10.1186/1754-6834-5-72

    Article  CAS  Google Scholar 

  • Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C labeling of common amino acids. Eur J Biochem 268(8):2464–2479

    Article  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270. doi:10.1002/yea.1208

    Article  CAS  Google Scholar 

  • Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276. doi:10.1016/j.ymben.2003.09.002

    Article  CAS  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141. doi:10.1016/j.tig.2007.12.007

    Article  CAS  Google Scholar 

  • Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29. doi:10.1186/1475-2859-8-29

    Article  Google Scholar 

  • Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131. doi:10.1111/j.1567-1364.2007.00302.x

    Article  CAS  Google Scholar 

  • Oberhardt MA, Chavali AK, Papin JA (2009a) Flux balance analysis: interrogating genome-scale metabolic networks. Methods Mol Biol 500:61–80. doi:10.1007/978-1-59745-525-1_3

    Article  CAS  Google Scholar 

  • Oberhardt MA, Palsson BO, Papin JA (2009b) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320. doi:10.1038/msb.2009.77

    Article  Google Scholar 

  • Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. doi:10.1038/nbt.1614

    Article  CAS  Google Scholar 

  • Palsson B (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, New York

    Book  Google Scholar 

  • Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460. doi:10.1016/j.copbio.2008.08.007

    Article  CAS  Google Scholar 

  • Passoth V, Zimmermann M, Klinner U (1996) Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 57–58:201–212

    Article  Google Scholar 

  • Puigbo P, Guzman E, Romeu A, Garcia-Vallve S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35(Web Server issue):W126–W131. doi:10.1093/nar/gkm219

    Article  Google Scholar 

  • Racle J, Overney J, Hatzimanikatis V (2012) A computational framework for the design of optimal protein synthesis. Biotechnol Bioeng. doi:10.1002/bit.24463

  • Rizzi M, Harwart K, Erlemann P, Bui-Thanh N-A, Dellweg H (1989) Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67(1):20–24. doi:10.1016/0922-338x(89)90080-9

    Article  CAS  Google Scholar 

  • Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45. doi:10.1186/1752-0509-4-45

    Article  Google Scholar 

  • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307. doi:10.1038/nprot.2011.308

    Article  CAS  Google Scholar 

  • Schroer K, Peter Luef K, Stefan Hartner F, Glieder A, Pscheidt B (2010) Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Metab Eng 12(1):8–17. doi:10.1016/j.ymben.2009.08.006

    Article  CAS  Google Scholar 

  • Selvarasu S, Karimi IA, Ghim GH, Lee DY (2010) Genome-scale modeling and in silico analysis of mouse cell metabolic network. Mol Biosyst 6(1):152–161. doi:10.1039/b912865d

    Article  CAS  Google Scholar 

  • Shelikoff M, Sinskey AJ, Stephanopoulos G (1996) A modeling framework for the study of protein glycosylation. Biotechnol Bioeng 50(1):73–90. doi:10.1002/(SICI)1097-0290(19960405)50:1<73::AID-BIT9>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  • Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43. doi:10.1186/1475-2859-8-43

    Article  Google Scholar 

  • Skoog K, Hahn-Hagerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56(11):3389–3394

    CAS  Google Scholar 

  • Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY (2010) Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J. doi:10.1002/biot.201000078

  • Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24(1):9–21. doi:10.2165/11530550-000000000-00000

    Article  CAS  Google Scholar 

  • Sola A, Maaheimo H, Ylonen K, Ferrer P, Szyperski T (2004) Amino acid biosynthesis and metabolic flux profiling of Pichia pastoris. Eur J Biochem 271(12):2462–2470. doi:10.1111/j.1432-1033.2004.04176.x

    Article  CAS  Google Scholar 

  • Sola A, Jouhten P, Maaheimo H, Sanchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153(Pt 1):281–290. doi:10.1099/mic.0.29263-0

    Article  CAS  Google Scholar 

  • Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121. doi:10.1038/nprot.2009.203

    Article  CAS  Google Scholar 

  • Umana P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng 55(6):890–908. doi:10.1002/(SICI)1097-0290(19970920)55:6<890::AID-BIT7>3.0.CO;2-B

    Article  CAS  Google Scholar 

  • Unrean P, Nguyen NH (2012) Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Appl Microbiol Biotechnol 94(5):1387–1398. doi:10.1007/s00253-012-4059-3

    Article  CAS  Google Scholar 

  • Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731

    CAS  Google Scholar 

  • Varner J, Ramkrishna D (1999) Mathematical models of metabolic pathways. Curr Opin Biotechnol 10(2):146–150

    Article  CAS  Google Scholar 

  • Wang Q, Chen X, Yang Y, Zhao X (2006) Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl Microbiol Biotechnol 73(4):887–894. doi:10.1007/s00253-006-0535-y

    Article  CAS  Google Scholar 

  • Wegner GH, Harder W (1987) Methylotrophic yeasts—1986. Antonie Van Leeuwenhoek 53(1):29–36

    Article  CAS  Google Scholar 

  • Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C (2009a) Design parameters to control synthetic gene expression in Escherichia coli. PLoS One 4(9):e7002. doi:10.1371/journal.pone.0007002

    Article  Google Scholar 

  • Welch M, Villalobos A, Gustafsson C, Minshull J (2009b) You’re one in a googol: optimizing genes for protein expression. J R Soc Interface 6(Suppl 4):S467–S476. doi:10.1098/rsif.2008.0520.focus

    Article  CAS  Google Scholar 

  • Williams TC, Poolman MG, Howden AJ, Schwarzlander M, Fell DA, Ratcliffe RG, Sweetlove LJ (2010) A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol 154(1):311–323. doi:10.1104/pp.110.158535

    Article  CAS  Google Scholar 

  • Wriessnegger T, Gubitz G, Leitner E, Ingolic E, Cregg J, de la Cruz BJ, Daum G (2007) Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. Biochim Biophys Acta 1771(4):455–461. doi:10.1016/j.bbalip.2007.01.004

    Article  CAS  Google Scholar 

  • Yamada Y, Matsuda M, Maeda K, Mikata K (1995) The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae). Biosci Biotechnol Biochem 59(3):439–444

    Article  CAS  Google Scholar 

  • Yuan T, Ren Y, Meng K, Feng Y, Yang P, Wang S, Shi P, Wang L, Xie D, Yao B (2011) RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose. Appl Microbiol Biotechnol 92(6):1237–1249. doi:10.1007/s00253-011-3607-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National University of Singapore, the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), the National Research Foundation of Singapore (NRFCRP5-2009-03), and a grant from the Global R&D project program (N011500017), Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Yup Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, B.KS., Lakshmanan, M., Klement, M. et al. Metabolic reconstruction and flux analysis of industrial Pichia yeasts. Appl Microbiol Biotechnol 97, 1865–1873 (2013). https://doi.org/10.1007/s00253-013-4702-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4702-7

Keywords

Navigation