Skip to main content
Log in

Optimisation of Hydrocortisone Production by Curvularia lunata

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new method for breeding the hydrocortisone overproducing strain Curvularia lunata by screening ketoconazole-resistance mutant was developed. A hydrocortisone overproducing mutant C. lunata KA-91 with ketoconazole-resistance marker was obtained from protoplasts treated with ultraviolet radiation. The hydrocortisone conversion rate of C. lunata KA-91 was increased by 42.1% compared to the original strain CL-114 at the substrate 17α-hydroxypregn-4-en-3, 20-dione-21-acetate addition concentration of 1.0 g/L. The by-products produced by KA-91 were fewer than those of the original strain. It was assumed that the higher cytochrome P450 content of ketoconazole-resistance mutant resulted in the increase of 11β-hydroxylation capacity. The culture conditions for biotransformation of 17α-hydroxypregn-4-en-3, 20-dione-21-acetate to hydrocortisone were optimized by response surface methodology. Plackett–Burman design was applied to elucidate the key factors affecting the hydrocortisone production, and the results indicated that glucose, initial pH, and glucose to total nitrogen sources ratio (ω) had significant effects on hydrocortisone production. Box–Behnken design was employed to search for the optimal parameters of those three key factors. According to the model, the trial checking at the optimal conditions showed a high hydrocortisone conversion rate of 82.67%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HCCR:

hydrocortisone conversion rate (%)

RT:

retain time (min)

Y :

experimental response of Plackett–Burman design (HCCR, %)

Z :

experimental response of Box–Behnken design (HCCR, %)

x i :

coded value of the variable X i

X i :

variable

X 0 :

value of X i at the center point

X :

step change

α i :

linear coefficient

α 0 :

intercept of α i

β i :

linear coefficients

β ii :

squared coefficients

β ij :

interaction coefficients

β 0 :

intercept of β i

ω :

glucose to total nitrogen sources ratio

References

  1. Colingsworth, D. R., Karnemaat, J. N., Hanson, F. R., Brunner, M. P., Mann K. M., & Haines W. J. (1953). A partial microbiological synthesis of hydrocortisone. Journal of Biological Chemistry, 203, 807–813.

    CAS  Google Scholar 

  2. Naim, N., Adham, N. Z., Abd El-Rehim, R., & Abd El-Hady, A. (2003). Prednisolone production using Pseudomonas fluorescens cells immobilized with polymer carrier produced by radiation polymerisation. Process Biochemistry, 38, 1083–1089.

    Article  CAS  Google Scholar 

  3. Wilmanska, D., Milczarek, K., Rumijowska, A., Bartnicka, K., & Sedlaczek, L. (1992). Elimination of by-products in 11β-hydroxylation of Substance S using Curvularia lunata clones regeneration from NTG-treated protoplasts. Applied Microbiology and Biotechnology, 37, 626–630.

    Article  CAS  Google Scholar 

  4. Chen, K. C., & Wey, H. C. (1990). 11β-Hydroxylation of cortexolone by Curvularia lunata. Enzyme and Microbial Technology, 12, 305–308.

    Article  CAS  Google Scholar 

  5. Sukhodolskaya, G. V., Angelova, B. A., & Koshcheenko, K. A. (1991). Synthesis of steroid 11β-hydroxylase and peculiarities of the transformation of crystalline Reichstein’s substance S by free and immobilized mycelium of Curvularia lunata VFM F-644. Prikladnaâ Biohimiâ Mikrobiologiâ, 27, 701–710.

    CAS  Google Scholar 

  6. Hesketh, A., & Ochi, K. (1997). A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12 mutation conferring resistance to streptomycin. Journal of Antibiotics, 50, 532–535.

    CAS  Google Scholar 

  7. Hu, H., & Ochi, K. (2001). Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Applied and Environmental Microbiology, 67, 1885–1892.

    Article  CAS  Google Scholar 

  8. Paraszkiewicz, K., & Długonski, J. (1998). Cortexolone 11β-hydroxylation in protoplasts of Curvularia lunata. Journal of Biotechnology, 65, 217–224.

    Article  CAS  Google Scholar 

  9. Suzuki, K., Sanga, K. I., Chikaoka, Y., & Itagaki, E. (1993). Purification and properties of cytochrome P-450 (P-450lun) catalyzing steroid 11β-hydroxylation in Curvularia lunata. Biochimica et Biophysica Acta, 1203, 215–223.

    CAS  Google Scholar 

  10. Edlind, T. D., Henry, K. W., & Metera, K. (2001). Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance. Medical Mycology, 39, 299–302.

    Article  CAS  Google Scholar 

  11. Lamb, D. C., Kelly, D. E., & White, T. C. (2000). The R467K amino acid substitution in Candida albicans sterol 14 alpha-demethylase causes drug resistance through reduced affinity. Antimicrobial Agents and Chemotherapy, 44, 63–67.

    Article  CAS  Google Scholar 

  12. Sanglard, D., Ischer, F., & Koymans, L. (1998). Amino acid substitutions in the cytochrome P450 lanosterol 14α-demethylase from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrobial Agents and Chemotherapy, 42, 241–253.

    Article  CAS  Google Scholar 

  13. Hamamoto, H., Hasegawa, K., & Nakaune, R. (2000). Tandem repeat of a transcriptional enhancer upstream of the sterol 14-demethylase gene (CYP51) in Penicillium digitatum. Applied and Environmental Microbiology, 66, 3421–3426.

    Article  CAS  Google Scholar 

  14. Schnabel, G., & Jones, A. L. (2001). The 14 alpha-demethylase (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to Myclobutanil. Phytopathology, 91, 102–110.

    Article  CAS  Google Scholar 

  15. Wang, J., Chen, C. Z., Li, B. A., Zhang J. H., & Yu, Y. T. (1998). Production of hydrocortisone from cortexolone-21-acetate by immobilized Absidia orchidis in cosolvent-containing media. Enzyme and Microbial Technology, 22, 368–372.

    Article  CAS  Google Scholar 

  16. Krishna, S. H., Manohar, B., Divakar, S., Prapulla, S. G., & Karanth, N. G. (2000). Optimization of isoamyl acetate production by using immobilized lipase from Mucor miehei by response surface methodology. Enzyme and Microbial Technology, 26, 131–136.

    Article  Google Scholar 

  17. Chen, Q. H., He, G. Q., & Mokhtar, A. M. (2002). Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme and Microbial Technology, 30, 667–672.

    Article  CAS  Google Scholar 

  18. Mahat, M. K., Illias, R. M., Rahman, R. A., Rashiol N. A. A., Mahmood N. A. N., & Hassan, O. (2004). Production of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. TS1-1: media optimization using experimental design. Enzyme and Microbial Technology, 35, 467–473.

    Article  CAS  Google Scholar 

  19. Li, C., Bai, J., & Cai, Z. L. (2002). Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology, 93, 27–34.

    Article  CAS  Google Scholar 

  20. Wang, M., Guo, Y. W., Lu, W. Y., Bao, H. K., & Du, L. X. (2004). Breeding of high hydrocortisone transforming strains and their optimal fermentation conditions. Chinese Journal of Applied and Environmental Biology, 10, 663–666.

    CAS  Google Scholar 

  21. Lu, W. Y., Guo, Y. W., Gong, W., Wang, M., & Du, L. X. (2003). Protoplast formation and regeneration of Curvularia lunata. Pharmaceutical Biotechnology, 10, 141–143.

    CAS  Google Scholar 

  22. Omura, T., & Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes. Journal of Biological Chemistry, 239, 2370–2378.

    CAS  Google Scholar 

  23. Lu, W. Y., Guo, Y. W., Wang, M., & Du, L. (2003). Determination of hydrocortisone and related compounds in the culture of hydrocortisone by HPLC. Chinese Journal of Chromatography, 21, 388–390.

    CAS  Google Scholar 

  24. SAS Institute Inc. (1985). RSREG procedure. In: SAS:STAT user ’s guide, version 5. Cary, NC: SAS Institute Inc., pp 725–734.

  25. Lu, W. Y., Guo, Y. W., Chen, P. C., Wang, M., & Du, L. X. (2003). Role of Curvularia lunata cytochrome P450 during the 11β-hydroxylation of steroid. Journal of China Pharmaceutical University, 34, 573–576.

    CAS  Google Scholar 

  26. Clark, T. A., Chang, R., & Maddox, I. S. (1982). The effect of dissolved oxygen tension on 11β- and 19-hydroxylation of Reichstein’s substance S by Pellicularia filamentosa. European Journal of Applied Microbiology and Biotechnology, 14, 131–135.

    Article  CAS  Google Scholar 

  27. Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2, 455–476.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the Key Science and Technology Development Foundation of Tianjin (No. 023180211) and the Key Science and Technology Research Program of Chinese Educational Ministry (No. 01004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianxiang Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Du, L., Wang, M. et al. Optimisation of Hydrocortisone Production by Curvularia lunata . Appl Biochem Biotechnol 142, 17–28 (2007). https://doi.org/10.1007/s12010-007-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0005-8

Keywords

Navigation