Skip to main content
Log in

Review: Bacterial transformations of bile acids

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The microbial transformation of bile acids that takes place in the lower alimentary tract plays an important role in the in vivo metabolism of bile acids and also of cholesterol in general. Most of the transforming reactions involved can be reproduced in in vitro cultures of mixed intestinal microflora: hydrolysis of the peptide bond in the conjugated bile acids, removal of the 7α-OH group, and dehydrogenation of the α-OH substituents at C-7, C-3 and C-12. The last reaction, which leads to the formation an oxo group, is reversible and a stereospecific reduction of, the oxo moiety into a b-OH group has been shown to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrne S., Nobaek S., Jeppsson B., Adlerberth I., Wold A.E., Molin G., 1998 The normal Lactobacillus flora of healthy human rectal and oral mucosa Journal of Applied Microbiology 85: 88–94

    Article  PubMed  CAS  Google Scholar 

  • Alme B., Bremmelgaard A., Sjovall J., Thomassen P., 1977 Analysis of metabolic profiles of bile acids in urine using lipophilic anion exchanger and computerized gas-liquid chromatography-mass spectrometry Journal of Lipid Research 18: 339–362

    PubMed  CAS  Google Scholar 

  • Aries V., Hill M.J., 1970 Degradation of steroids by intestinal bacteria II enzymes catalyzing the oxido-reduction of the 3α, 7α-and 12α-hydroxyl group. Biochimica et Biophysica Acta 202: 535–543

    PubMed  CAS  Google Scholar 

  • Batta A.K., Aggarwal S.K., Salen G., Shefer S., 1991 Selective reduction of oxo-bile acids: synthesis of 3-beta, 7-beta and 12-beta hydroxy bile acids Journal of Lipid Research 32: 977–983

    PubMed  CAS  Google Scholar 

  • Batta A.K., Salen G., Shefer S., 1985 Transformation of bile acids into iso-bile acids by Clostridium perfringens: possible transport of 3- beta hydrogen via the coenzyme Hepatology 5: 1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Bennett M.J., McKnight , S.L., Coleman J.P., 2003 Cloning and characterization of the NAD-dependent 7α-hydroxysteroid dehydrogenase from Bacteroides fragilis Current Microbiology 47: 475–484

    Article  PubMed  CAS  Google Scholar 

  • Boener P.O., Verstraete W., 1999 Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity Journal of Applied Microbiology 87: 345–352

    Article  PubMed  Google Scholar 

  • Bongaerts G.P., Severijnen R.S., Tangerman A., Verrips A, Tolboom J.J., 2000 Bile acid deconjugation by Lactobacilli and its effects in patients with a short small bowel Journal of Gastroenterology 35: 801–804

    Article  PubMed  CAS  Google Scholar 

  • Bortolini O., Medici A., Poli S., 1997 Biotransformation in steroid nucleus of bile acids Steroids 62: 564–77

    Article  PubMed  CAS  Google Scholar 

  • Boyer J., Bawn D.N., Talalay P., 1965 Purification and properties of 3α-hydroxysteroid dehydrogenase from Pseudomonas testosteroni Biochemistry 4: 1825–1833

    Article  CAS  Google Scholar 

  • Brunner H., Hofmann A.F., Summerskill W.H.J., 1972 Daily secretion of bile acids and cholesterol measured in health Gastroentrology 62: 188

    Google Scholar 

  • Catteau M., Henry M., Beerens H., 1971 Deconjugation des sels billiairis des bacteries des generes Bacteroides et Bifidobacterium Annales de l Institut Pasteur de Lille 22: 201–205

    PubMed  CAS  Google Scholar 

  • Chiang J.Y., 2004 Regulation of bile acid synthesis: pathways nuclear receptors and mechanisms Journal of Hepatology 40: 539–551

    Article  PubMed  CAS  Google Scholar 

  • Coleman J.P., White W.B., Egestad B., Sjovall J., Hylemon P.B., 1987 Biosynthesis of a novel bile acid nucleotide and mechanism of 7α-dehydroxylation by an intestinal Eubacterium species Journal of Biological Chemistry 262: 4701–4707

    PubMed  CAS  Google Scholar 

  • Delin S., Squire P.G., Porath J., 1964 Purification of steroid induced enzymes from Pseudomonas testosteroni Biochimica et Biophysica Acta 89: 398–408

    PubMed  CAS  Google Scholar 

  • Doerner K.C., Takamine F., La Voie C.P., Mallonee D.H., Hylemon P.B., 1997 Assessment of faecal bacteria and bile acid 7α-dehydroxylating activity for the presence of bai like genes Applied and Environmental Microbiology 63: 1185–1188

    PubMed  CAS  Google Scholar 

  • Edenharder R., Knaflic T., 1981 Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase lipase negative Clostridia Journal of Lipid Research 22: 652–658

    PubMed  CAS  Google Scholar 

  • Edenharder R., 1984 Dehydroxylation of cholic acid at C-12 and epimerization at C5 and C7 by Bacteroides species Journal of Steroid Biochemistry 21: 413

    Article  PubMed  CAS  Google Scholar 

  • Edenharder R., Schneider J., 1985 12β-Dehydrogenation of bile acids bei Clostridium paraputrificum, C. tertium. & C. difficile, and epimerization at carbon 12 of deoxycholic acid by cocultivation with 12α-dehydrogenating Eubacterium lentum Applied and Environmental Microbiology 49: 964–968

    PubMed  CAS  Google Scholar 

  • Edenharder R., Pfutzner A., Hammann R., 1989 Characterization of NAD- dependent 3α- and 3β-hydroxysteroid dehydrogenase and of NADP-dependent 7β-hydroxysteroid dehydrogenase from Peptostreptococcus productus Biochimica et Biophysica Acta. 1004: 230–38

    PubMed  CAS  Google Scholar 

  • Ferrari A., 1967 Deossidrilazione C7 dell’ acidocolico in vitro ad opera di microorganismi fecali dell’ uomo Annals of Microbiology 17: 165–180

    CAS  Google Scholar 

  • Ferrari A., Scolalstico C., Beretta L., 1977 On the mechanism of cholic acid 7α-dehydroxylation by a Clostridium bifermentans cell free extract FEBS Letters 75:166–168

    Article  PubMed  CAS  Google Scholar 

  • Goddard P., Fernandez F., West B., Hill M.J., Barnes P., 1975 The nuclear dehydrogenation of steroids by intestinal bacteria Journal of Medical Microbiology 8: 429–435

    PubMed  CAS  Google Scholar 

  • Grundy S.M. Metzeger A.L., 1972 A physiological method for estimation of hepatic secretion of biliary lipids in man Gastroenterology 62: 1200–1217

    PubMed  CAS  Google Scholar 

  • Harris J.N., Hylemon P.B, 1978 Partial purification and characterization of NADP-dependent 12α-hydroxysteroid dehydrogenase from Clostridium leptum Biochimica et Biophysica Acta 528: 148–157

    PubMed  CAS  Google Scholar 

  • Hashimoto H., Kawase M., Hosoda M., He F., Morita H., Hosono A., 2000 Binding, deconjugation and oxidation of taurocholic acid with lactobacilli cells Milchwissenschaft 55: 316–319

    CAS  Google Scholar 

  • Hayakawa S., Samuelsson B., 1964 Transformaion of cholic acid in vitro by Corynebacterium simplex Journal of Biological Chemistry 239: 94–97

    PubMed  CAS  Google Scholar 

  • Hayakawa S., Hattori T., 1970 7α-Dehydroxylation of cholic acid by Clostridium bifermentans strain ATCC 9714 and Clostridium sordelli NCIB 6929 FEBS Letters 6: 131–133

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa S., 1973 Microbiological transformation of bile acids Advances in Lipid Research 11: 143–192

    CAS  Google Scholar 

  • Hirano S., Masuda N., 1981 Epimerization of 7α-hydroxyl group of bile acids by the combination of the two kinds of microorganisms with 7α-and 7b-hydroxysteroid dehydrogenase Journal of Lipid Research 22: 1060–1068

    PubMed  CAS  Google Scholar 

  • Hirano S., Masuda N., Oda H., Imamura T., 1981 Transformation of bile acids by mixed microbial cultures from human faeces and bile acid transforming activities of isolated bacterial strains Microbiology and Immunology 25: 271–282

    PubMed  CAS  Google Scholar 

  • Hirano S., Masuda N., 1982 Characterization of NADP-dependent 7β-hydroxysteroid dehydrogenases from Peptostreptococcus productus and Eubacterium aerofaciens Applied and Environmental Microbiology 43: 1057–1063

    PubMed  CAS  Google Scholar 

  • Hofmann A.F., 1991 The continuing importance of bile acids in liver and intestinal disease Archives of Internal Medicine 159: 2647–2658

    Article  Google Scholar 

  • Hylemon P.B., Harder J, 1998 Biotransformation of monoterpenes, bile acids and isoprenoids in anaerobic ecosystems FEMS Microbiology Reviews 22: 475–88

    Article  PubMed  CAS  Google Scholar 

  • Imperato T.J., Wong C.G., Chen L.J., Bolt R.J., 1977 Hydrolysis of lithocholate sulphate by Pseudomonas aeruginosa Journal of Bacteriology 130: 545–547

    PubMed  CAS  Google Scholar 

  • Kallner A., 1967 The transformation of deoxycholic acid into allodeoxycholic acid in the rat Acta Chemica Scandinavica 21: 87–92

    PubMed  CAS  Google Scholar 

  • Kinoshita S., Kadota K., Inoue T., Sawada H., Taguchi H., 1988 Purification and properties of three kinds of α-hydroxysteroid dehydrogenase from Brevibacterium fuscum DC33 Journal of Fermentation Technology 66: 145–152

    Article  CAS  Google Scholar 

  • Lepercq P., Gerard P., Begnet F., Grill J.B., Caynela C., Juste C., 2004 Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratti isolated from human feces FEMS Microbiology Letters 235: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Lotveit T., Osnes M., Aune S., 1978 Bacteriological studies of common duct bile in patients with gallstone disease and juxtapapillary duodenal diverticula Scandinavian Journal of Gastroenterology 13: 93–95

    Article  PubMed  CAS  Google Scholar 

  • Lundeen S.G., Savage D.C., 1990 Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100–100 Journal of Bacteriology 172: 4171–4177

    PubMed  CAS  Google Scholar 

  • Lundeen S.G., Savage D.C., 1992 Characterization of an extracellular factor that stimulates bile salt hydrolase activity in Lactobacillus sp. strain 100–100 FEMS Microbiology Letters 94: 121–126

    Article  CAS  Google Scholar 

  • Macdonald I.A., Williams C.N., Mahony D.E., 1973 7α-Hydroxysteroid dehydrogenase from E. coli. B. Preliminary studies Biochimica et Biophysica Acta 309: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Macdonald I.A., Williams C.N., Mahony D.E., Christie W.M., 1975 NAD- and NADP-dependent 7α-hydroxysteroid dehydrogenase from Bacteroides fragilis Biochimica et Biophysica Acta 384: 12–24

    Article  PubMed  CAS  Google Scholar 

  • Macdonald I.A., Jellet J.E., Mahony D.E., 1979 12α-Hydroxysteroid dehydrogenase from Clostridium group P strain (48–50 ATCC 29733): partial purification and characterization Journal of Lipid Research 20: 234–239

    PubMed  CAS  Google Scholar 

  • Macdonald I.A., Rochon Y.P., Hutchison D.M., Holdeman L.V., 1982 Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7α-hydroxysteroid dehydrogenase elaborating organisms Applied and Environmental Microbiology 44: 1187–1195

    PubMed  CAS  Google Scholar 

  • Macdonald I.A., White B.A., Hylemon P.B., 1983 Separation of 7α and 7b-hydroxysteroid dehydrogenase activities from Clostridium absonum ATCC 27555 and cellular response of this organism to bile acid inducers Journal of Lipid Research 24: 1119–1136

    PubMed  CAS  Google Scholar 

  • Mallonee D.H., Adams J.L., Hylemon P.B., 1992 The bile acid inducible bia B gene from eubacterium sp. strain VPI 12708 encodes a bile acid coenzyme A ligase Journal of Bacteriology 174: 2065–2071

    PubMed  CAS  Google Scholar 

  • Masuda N., 1981 Deconjugation of bile salts by Bacteroides and Clostridium Microbiology and Immunology 25: 1–11

    PubMed  CAS  Google Scholar 

  • Mikov M., Kuhajda K, Kandra C.J., 2003 Current aspects in pharmacologic use of bile acids Medicinski pregled 56: 237–242

    Article  PubMed  Google Scholar 

  • Moser S.A., Savage D.C., 2001 Bile hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in Lactobacilli Applied and Environmental Microbiology 67: 3476–3480

    Article  PubMed  CAS  Google Scholar 

  • Murakami T., Sasaki Y., Yamajo R., Yata N., 1984 Effect of bile salts on the rectal adsorption of sodium ampicillin in rats Chemical and. Pharmaceutical Bulletin 32: 1948

    CAS  Google Scholar 

  • Narushima S., Ito K., Kuruma K., Uchida K., 2000 Composition of cecal bile acids in germfree mice inoculated with human intestinal bacteria Lipids 35: 639–644

    Article  PubMed  CAS  Google Scholar 

  • Norman A., Palmer R.H., 1964 Metabolism of lithocholic acid-24-14C in human bile and faeces Journal of Laboratory and Clinical Medicine 63: 986–1001

    PubMed  CAS  Google Scholar 

  • Owen R.W., 1985 Biotransformation of bile acids by Clostridia Journal of Medical Microbiology 20: 233–38

    Article  PubMed  CAS  Google Scholar 

  • Owen R.H., Hill M.J., Rodney F.B., 1983 Biotransformation of chenodeoxycholic acid by Pseudomonas species NCIB 10590 under anaerobic conditions Journal of Lipid Research 24: 1109–1126

    PubMed  CAS  Google Scholar 

  • Prabha V., Gupta M., Gupta K.G, 1989 Kinetic properties of 7α-hydroxysteroid dehydrogenase from Escherichia coli 080 Canadian Journal of Microbiology 35: 1076–1080

    Article  PubMed  CAS  Google Scholar 

  • Prabha V., Gupta M., Gupta K.G., 1990a Optimization of 7α-hydroxysteroid dehydrogenase production by Escherichia coli 080 Canadian Journal of Microbiology 36: 725–727

    Article  CAS  Google Scholar 

  • Prabha V., Gupta M., Seiffege D., Gupta K.G., 1990b Purification of 7α-hydroxysteroid dehydrogenase from Escherichia coli strain 080 Canadian Journal of Microbiology 36: 131–135

    CAS  Google Scholar 

  • Redniger R.N., 2003 The coming of age of our understanding of enterohepatic circulation of bile salts American Journal of Surgery 185: 168–172

    Article  PubMed  CAS  Google Scholar 

  • Renth G., 2001 The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession Current Issues in Intestinal Microbiology 2: 43–53

    PubMed  Google Scholar 

  • Robben J., Caenepeal P., VanEldere J., Eysson H., 1988 Effects of intestinal microbial bile salt sulphatase activity on bile salt kinetics in gnotobiotic rats Gastroenterology 94: 494–502

    PubMed  CAS  Google Scholar 

  • Roberts M.S., Magnusson B.M., Burczynski F.J., Weiss M., 2002 Enterohepatic circulation, physiological, pharmacokinetic and clinical implications Clinical Pharmacokinetics 41: 751–790

    Article  PubMed  CAS  Google Scholar 

  • Russel D.W., 2003 The enzymes, regulation and genetics of bile acids synthesis Annual Review of Biochemistry 72: 137–174

    Article  PubMed  CAS  Google Scholar 

  • Savage D.C., 1999 Mucosal microbiota. In Ogra P.L., Mertecky J., Lamm M.E., Strober W., Bienenstock J., Mcghee J.R, (Eds)., Mucosal Immunology 2nd edn. Academic Press, San Diego, London. pp .19–30. ISBN 0125247257

    Google Scholar 

  • Shimada K., Bricknell K.S., Finegold S.M., 1969 Deconjugation of bile acids by intestinal bacteria: review of literature and additional studies Journal of Infectious Diseases 119: 273–281

    CAS  Google Scholar 

  • Shimada K., Urayama K., Noro T., Inamatsu T., 1984 Biliary tract infection with anaerobes and the presence of free bile acids in bile Review of Infectious Diseases. 6(Suppl): S147–151

    Google Scholar 

  • Shindo K., Mizuna T., Shionoiri H., 1988 Deconjugation of bile acids by anaerobic bacteria isolated from the small intestine of cirrhotic patients Current Therapeutic Research – Clinical and Experimental 44: 699–704

    CAS  Google Scholar 

  • Skalhegg B.A., 1974 On the 3α-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. Purification and properties European Journal of Biochemistry 46: 117–125

    Article  PubMed  CAS  Google Scholar 

  • Stellwag E.J., Hylemon P.B., 1979 7α-Dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum Journal of Lipid Research 20: 325–333

    PubMed  CAS  Google Scholar 

  • Sutherland J.D., Hutchison D.M., Williams C.N., 1988 Lyophilized Clostridium perfringens 3α- and Clostridium bifermentans 7α-hydroxysteroid dehydrogenases: two new stable enzyme preparations for routine bile acid analysis Biochimica et Biophysica Acta 962: 116–121

    PubMed  CAS  Google Scholar 

  • Tabaqchali S., Booth C.C., 1966 Jejunal bacteriology and bile salt metabolism in patients with intestinal malabsorption Lancet 2: 12–15

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T., Tanaka N. Uchikawa K., Kabashima T., Ito K., Nonaka T., Mitoui Y.,Tsuru M., Yoshimoto T., 1998 Role of the Ser 146, Tyr 159 and Lys 163 residues in the catalytic action of 7α-hydroxy steroid dehydrogenase from Escherichia coli Biochemistry 124: 634–641

    CAS  Google Scholar 

  • Tanaka H., Hashiba H., Kok J., Mieran I., 2000 Bile salt hydrolase and genetic characterization Applied and Environmental Microbiology 66: 2502–2512

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N., Nonaka T., Tanabe T., Yoshimoto T., Tsuru D., Mitsui Y., 1996 Crystal structure of the binary and tertiary complexes of 7α-hydroxysteroid dehydrogenase from Eischerichia.coli Biochemistry 35: 7715–7730

    Article  PubMed  CAS  Google Scholar 

  • Taranto M.P., Sesma F., Pesce de Ruiz Holgado A., de Valdez G.F., 1997 Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri Biotechnology Letters 19: 845–847

    Article  CAS  Google Scholar 

  • Tazuka Y., Matsuda K., Adachi K.K., Tsukda Y., 1994 Purification and properties of bile acid sulphatase from Pseudomonas testosteroni Bioscience, Biotechnology and Biochemistry. 58: 8899

    Google Scholar 

  • Tenneson M.E., Owen R.W., Mason A.N., 1977 The anaerobic side chain cleavage of bile acids by E. coli isolated from human faeces Biochemical Society Transactions 5: 1758–1760

    PubMed  CAS  Google Scholar 

  • Tenneson M.E., Baty J.D., Bilton R.F., Mason A.N., 1979 The degradation of hyodeoxycholic acid by Pseudomonas sp. NCIB 10590 Journal of Steroid Biochemistry 11: 1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Topping D.L., 1996 Short chain fatty acids produced by intestinal bacteria Asian Pacific Journal of Clinical Nutrition 5: 15–19

    Google Scholar 

  • Torchia E.L., Cheema S.K., Agellon L.B., 1996 Coordinate regulation of bile acid biosynthetic and recovery pathways Biochemical and Biophysical Research Communications 225: 128–33

    Article  PubMed  CAS  Google Scholar 

  • Van Eldere J., Robben J., De Pauw G., Merckx R., Eyssen H., 1988 Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans Applied and Environmental Microbiology 54: 2112–2117

    PubMed  Google Scholar 

  • Warchol M., Car L., Grill J.P., Schneider F, 2003 Metabolic changes in Clostridium absonum ATCC 27555 accompanying induction of epimerization of primary bile acids Current Microbiology 47: 425–430

    Article  PubMed  CAS  Google Scholar 

  • Wells J.E., Berr E., Thomas I.A., Dowling R.H., Hylemon P.B., 2000 Isolation and characterization of cholic acid 7α-dehydroxylating fecal bacteria from cholesterol gallstone patients Journal of Hepatology 32: 4–10

    Article  PubMed  CAS  Google Scholar 

  • Wells J.E., Hylemon P.B., 2000 Identification and characterization of bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human faeces Applied and Environmental Microbiology 66: 1107–1113

    Article  PubMed  CAS  Google Scholar 

  • White B.A., Lipisky R.L., Fricke R.J., Hylemon P.B., 1980 Bile acid induction specificity of 7α-dehydroxylase activity in an intestinal Eubacterium species Steroids 35: 103–109

    Article  PubMed  CAS  Google Scholar 

  • White W.B., Coleman J.P., Hylemon P.B., 1988 Molecular cloning of a gene encoding a 45 kDa polypeptide associated with bile acid 7α-dehydroxylation in Eubacterium sp. Strain VPI 12708 Journal of Bacteriology 170: 611–616

    PubMed  CAS  Google Scholar 

  • Yoshimoto T., Higashi H., Kanatani A., Lin X.S., Nagai H., Oyama H., Kurazono K., Tsuru D., 1991 Cloning and sequencing of the 7α-hydroxysteroid dehydrogenase gene from Escherichia coli HB 101 and characterization of the expressed enzyme Journal of Bacteriology 173: 2173–2179

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Prabha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabha, V., Ohri, M. Review: Bacterial transformations of bile acids. World J Microbiol Biotechnol 22, 191–196 (2006). https://doi.org/10.1007/s11274-005-9019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-9019-y

Keywords

Navigation