Skip to main content

Advertisement

Log in

Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This work reviews the brown-rot fungal biochemical mechanism involved in the biodegradation of lignified plant cell walls. This mechanism has been acquired as an apparent alternative to the energetically expensive apparatus of lignocellulose breakdown employed by white-rot fungi. The mechanism relies, at least in the incipient stage of decay, on the oxidative cleavage of glycosidic bonds in cellulose and hemicellulose and the oxidative modification and arrangement of lignin upon attack by highly destructive oxygen reactive species such as the hydroxyl radical generated non-enzymatically via Fenton chemistry \( ({\text{F}}{{\text{e}}^{{{3} + }}} + {{\text{H}}_{{2}}}{{\text{O}}_{{2}}} \to {\text{F}}{{\text{e}}^{{{2} + }}} + \cdot {\text{OH}}{{ + }^{ - }}{\text{OH}}) \). Modifications in the lignocellulose macrocomponents associated with this non-enzymatic attack are believed to aid in the selective, near-complete removal of polysaccharides by an incomplete cellulase suite and without causing substantial lignin removal. Utilization of this process could provide the key to making the production of biofuel and renewable chemicals from lignocellulose biomass more cost-effective and energy efficient. This review highlights the unique features of the brown-rot fungal non-enzymatic, mediated Fenton reaction mechanism, the modifications to the major plant cell wall macrocomponents, and the implications and opportunities for biomass processing for biofuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agosin E, Jarpa S, Rojas E, Espejo E (1989) Solid-state fermentation of pine sawdust by selected brown-rot fungi. Enzyme Microb Technol 11:511–517

    Article  CAS  Google Scholar 

  • Arantes V, Milagres AMF (2006a) Evaluation of different carbon sources for production of iron-reducing compounds by Wolfiporia cocos and Perenniporia medulla-panis. Process Biochem 41:887–891. doi:10.1016/j.ibiod.2009.01.004

    Article  CAS  Google Scholar 

  • Arantes V, Milagres AMF (2006b) Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J Chem Technol Biotechnol 81:413–419. doi:10.1002/jctb.1417

    Article  CAS  Google Scholar 

  • Arantes V, Milagres AMF (2009) The relevance of low molecular weight compounds in wood biodegradation by fungi. Quim Nova 30:1586–1595 http://dx.doi.org/10.1590/S0100-40422009000600043

    Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuel 3:4. doi:10.1186/1754-6834-3-4

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:1–15. doi:10.1186/1754-6834-4-3

    Article  CAS  Google Scholar 

  • Arantes V, Qian Y, Kelley SS, Milagres AMF, Filley TR, Jellison J, Goodell B (2009a) Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood. J Biol Inorg Chem 8:1253–1263. doi:10.1007/s00775-009-0569-6

    Article  CAS  Google Scholar 

  • Arantes V, Qian Y, Milagres AMF, Jellison J, Goodell B (2009b) Effect of pH and oxalic acid on the reduction of Fe3+ by a biomimetic chelator and on Fe3+ desorption/adsorption onto wood: implications for brown rot decay. Int Biodeterioration Biodegr 63:478–483. http://dx.doi.org/10.1016/j.ibiod.2009.01.004

  • Arantes V, Milagres AMF, Filley TR, Goodell B (2011) Lignocellulosic polysaccharides and lignin degradataion by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38:541–555. doi:10.1007/s10295-010-0798-2

    Article  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Tech 78A-87A. doi:10.1021/es00051a002

  • Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol 53:203–213. doi:10.1016/S0168-1656(97)01674-X

    Article  CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543. http://dx.doi.org/10.1006/abbi.1993.1074

    Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93. doi:10.1007/10_2007_064

    CAS  Google Scholar 

  • Cohen R, Jensen KA, Houtman CJ, Hammel KE (2002) Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett 531:483–488

    Article  CAS  Google Scholar 

  • Cohen R, Suzuki MR, Hammel KE (2004) Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 70:324–331. doi:10.1128/AEM.70.1.324-331.2004

    Article  CAS  Google Scholar 

  • Cohen R, Suzuki M, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417. doi:10.1128/AEM.71.5.2412-2417.2005

    Article  CAS  Google Scholar 

  • Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. USDA Tech Bull. 1258

  • Cowling EB, Brown W (1969) Structural features of cellulosic materials in relation to enzymatic hydrolysis. In: Fietcher A (ed) Advances in biochemical engineering 20: bioenergy. Springer, Berlin, pp 152–187

    Google Scholar 

  • Curling S, Clausen C, Winandy J (2001) The effect of hemicellulose degradation on the mechanical properties of wood during brown rot decay. Int Res Group Wood Pres IRG/WP 01-20219

  • Daniel G, Volc J, Filonova L, Plíhal O, Kubátová HP (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 73:6241–6253. doi:10.1128/AEM.00977-07

    Article  CAS  Google Scholar 

  • Davis MF, Schroeder HA, Maciel GE (1994) Solid-state 13C nuclear magnetic-resonance studies of wood decay. Decay of Colorado blue spruce and paper birch by Postia placenta. Holzforschung 48:301–307. doi:10.1515/hfsg.1994.48.4.301

    Article  CAS  Google Scholar 

  • Dutton MV, Evans CS, Atkey PT, Wood DA (1993) Oxalate production by Basydiomycete, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 29:5–10. doi:10.1007/BF00166839

    Google Scholar 

  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee Y-H, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765. doi:10.1126/science.1205411

    Article  CAS  Google Scholar 

  • Ek M, Gierer J, Jansbo K (1989) Study on the selectivity of bleaching with oxygen-containing species. Holzforschung 43:391–396. doi:10.1515/hfsg.1989.43.6.391

    Article  CAS  Google Scholar 

  • Enoki A, Hirano T, Tanaka H (1992) Extracellular substance from the brown-rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide. Mater Org 27:247–261. doi:10.1128/AEM.67.6.2705-2711.2001

    CAS  Google Scholar 

  • Enoki A, Itajura S, Tanaka H (1997) The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric ion to ferrous iron in wood degradation by wood decay fungi. J Biotechnol 53:265–272. doi:10.1016/S0168-1656(97)01682-9

    Article  CAS  Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, pp 1–72

    Google Scholar 

  • Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746. doi:10.1002/bit.21436

    Article  CAS  Google Scholar 

  • Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2010) Localisation and characterization of incipient brown-rot decay within spruce cell walls using FT-IR imaging microscopy. Enzyme Microbial Technol 47:257–267. doi:10.1016/j.enzmictec.2010.07.009

    Article  CAS  Google Scholar 

  • Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124. doi:10.1016/S0146-6380(01)00144-9

    Article  CAS  Google Scholar 

  • Flournoy DS, Kirk TK, Highley TL (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383–388. doi:10.1515/hfsg.1991.45.5.383

    Article  CAS  Google Scholar 

  • Fry SC, Dumville JC, Miller JG (2001) Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit. Biochem J 357:729–737, PMCID: PMC1222002

    Article  CAS  Google Scholar 

  • Gierer J (1997) Formation and involvement of superoxide (O2−⋅/HO2⋅) and hydroxyl (OH⋅) radicals in TCF bleaching processes: a review. Holzforschung 51:34–46. doi:10.1515/hfsg.1997.51.1.34

    Article  CAS  Google Scholar 

  • Gierer J, Yang E, Reitberger T (1992) The reactions of hydroxyl radicals with aromatic rings in lignins, studied with creosol and 4-methylveratrol. Holzforschung 46:495–504. doi:10.1515/hfsg.1992.46.6.495

    Article  CAS  Google Scholar 

  • Giles RL, Galloway ER, Elliott GD, Parrow MW (2011) Two-stage fungal biopulping for improved enzymatic hydrolysis of wood. Bior Technol 102:8011–8016. doi:10.1016/j.biortech.2011.06.031

    Google Scholar 

  • Goodell B (2003) Brown rot degradation of wood: our evolving view. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. ACS Symposium Series 845, Washington, pp 97–118

    Chapter  Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162. doi:10.1016/S0168-1656(97)01681-7

    Article  CAS  Google Scholar 

  • Goodell B, Jellison J, Liu J, Krisnamurthy S (2000) Degradation and protection of organic compounds mediated by low molecular weight chelators. US Patent and Trademark Office. 6046375

  • Goodell B, Qian Y, Jellison J, Richard M, Qi W (2002) Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: a comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions. In: Viikari L, Lantto R (eds) Progress in biotechnology, biotechnology in the pulp and paper industry, v. 21. Elsevier, Amsterdam, pp 37–78

    Google Scholar 

  • Goodell B, Daniel G, Jellison J, Qian Y (2006) Iron-reducing capacity of low-molecular weight compounds produced in wood by fungi. Holzforschung 60:630–636. doi:10.1515/HF.2006.106

    Article  CAS  Google Scholar 

  • Goodell B, Qian Y, Jellison J (2008) Fungal decay of wood: soft rot-brown rot-white-rot. In: Schultz T, Nicholas D, Militz H, Freeman MH, Goodell B (eds) Development of commercial wood preservatives: efficacy, environmental, and health issues. ACS Symposium Series, c. 982, Washington, pp 9–31

    Chapter  Google Scholar 

  • Halliwell G (1965) Catalytic decomposition of cellulose under biological conditions. Biochem J 95:35–40

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453. doi:10.1016/S0141-0229(02)00011-X

    Article  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Poulsen JCN, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Leggio LL (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316. doi:10.1021/bi100009p

    Article  CAS  Google Scholar 

  • Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195:242–246. doi:10.1016/0014-5793(86)80168-5

    Article  CAS  Google Scholar 

  • Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 50:215–242. doi:10.1080/10635150121079

    Article  CAS  Google Scholar 

  • Highley TL (1977) Degradation of cellulose by culture filtrates of Postia placenta. Mater Org 12:161–174

    Google Scholar 

  • Highley TL (1987) Changes in chemical components of hardwood and softwood by brown-rot fungi. Mater Org 21:39–45

    Google Scholar 

  • Highley TL, Dashek WV (1998) Biotechnology in the study of brown- and white-rot decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor & Francis, London, pp 15–36

    Google Scholar 

  • Highley TL, Murmanis LL, Palmer TG (1985) Micromorphology of degradation in western and sweetgum by the brown-rot fungus Poria placenta. Holzforschung 39:73–78. doi:10.1515/hfsg.1985.39.2.73

    Article  CAS  Google Scholar 

  • Hirano T, Tanaka H, Enoki A (1995) Extracellular substance from the brown-rot basidiomycete Tyromyces palustris that reduces molecular oxygen to hydroxyl radicals and ferric iron to ferrous iron. Mokuzai Gakkaishi 41:334–341

    CAS  Google Scholar 

  • Howard JA (1973) Homogeneous liquid-phase autoxidation. In: Kotchi JK (ed) Free radical. Wiley, New York, pp 3–62

    Google Scholar 

  • Howell CA, Hastrup C, Goodell B, Jellison J (2009) Temporal changes in wood crystalline cellulose during degradation by brown rot fungi. Int Biodeter Biodegr 63:414–419. doi:10.1016/j.ibiod.2008.11.00

    Article  CAS  Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(II) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiol 143:259–266. doi:10.1099/00221287-143-1-259

    Article  CAS  Google Scholar 

  • IEA Task 39 (2011) Status of second generation biofuel demonstration plants, 2011. http://biofuels.abc-energy.at/demoplants/projects/mapindex. Accessed 16 Oct 2011

  • Illman BL, Meinholtz DC, Highley T (1989) Oxygen free radical detection in wood colonized by the brown rot fungus, Postia placenta. In: O’Rear C (ed) Biodeterioration Research 11, Proceedings of the 2nd meeting Pan American Biodeterioration Society, Washington, DC, Plenum, MY, pp 497–509

  • Irbe I, Andersome I, Andersons B, Noldt G, Dizhbite T, Kurnosova N, Nuopponen M, Stewart D (2011) Characterisation of the initial degradation stage of Scot pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana. Biodegr 22:719–728. doi:10.1007/s10532-010-9449-6

    Article  CAS  Google Scholar 

  • Jellison J, Chen Y, Fekete F (1997) Regulation of hyphal sheath formation and bio-chelator production by the brown-rot fungi Gloeophyllum trabeum and Postia placenta. Holzforschung 51:503–510

    Article  CAS  Google Scholar 

  • Jensen JRKA, Ryan ZC, Wymelenberg AV, Cullen D, Hammel K (2002) An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 68:2699–2703

    Article  CAS  Google Scholar 

  • Jin J, Schultz TP, Nicolas DD (1990) Structural characterization of brown-rotted lignin. Holzforschung 44:132–138. doi:10.1128/AEM.68.6.2699-2703.2002

    Article  Google Scholar 

  • Kang N, Lee DS, Yoon Y (2002) Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47:915–924. doi:10.1016/S0045-6535(02)00067-X

    Article  CAS  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446:49–54

    Article  CAS  Google Scholar 

  • Kirk TK (1975) Effects of the brown-rot fungus Lentzites trabea, on lignin in spruce wood. Holzforschung 29:99–107

    Article  CAS  Google Scholar 

  • Kirk TK, Adler E (1970) Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem Scand 24:3379–3390

    Article  CAS  Google Scholar 

  • Kirk K, Ibach R, Mozuch MD, Conner AH, Highley TL (1991) Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung 45:239–244. doi:10.1515/hfsg.1991.45.4.239

    Article  CAS  Google Scholar 

  • Kleman-Leyer K, Agosin E, Conner AH, Kirk K (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58:1266–1270

    CAS  Google Scholar 

  • Koenig AB, Sleighter RL, Salmon E, Hatcher PG (2010) NMR Structural characterization of Quercus alba (white oak) degraded by the brown rot fungus, Laetiporus sulpureus. J Wood Chem Technol 30:61–85. doi:10.1080/02773810903276668

    Article  CAS  Google Scholar 

  • Koenigs JW (1972) Effects of hydrogen peroxide on cellulose and on its susceptibility to cellulase. Material U Organismen 7:133–147

    Google Scholar 

  • Koenigs JW (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 6:66–79

    Google Scholar 

  • Koenigs JW (1975) Hydrogen peroxide and iron: a microbial cellulolytic system? In: Wilke CR (ed) Cellulose as a chemical and energy resource. Symposium 5, Biotechnology and Bioengineering, v. 5. Wiley, New York, pp 151–159

    Google Scholar 

  • Kumar L, Chandra R, Chung PA, Saddler J (2010) Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresour Technol 101:7827–7833. doi:10.1016/j.biortech.2010.05.023

    Article  CAS  Google Scholar 

  • Kumar L, Chandra R, Saddler J (2011) Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol Bioeng 108:2300–2311. doi:10.1002/bit.23185

    Article  CAS  Google Scholar 

  • Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose ccessibility. Bioresour Technol 103(1):201–208. http://dx.doi.org/10.1016/j.biortech.2011.09.091

    Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney M (2011) Oxidoreductive cellulose depolymerisation by enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015. doi:10.1128/AEM.05815-11

    Article  CAS  Google Scholar 

  • Lee SO, Tran T, Park YY, Kim SJ, Kim MJ (2006) Study on the kinetics of iron oxide leaching by oxalic acid. Intern J Mineral Processing 80:144–152. doi:10.1016/j.minpro.2006.03.012

    Article  CAS  Google Scholar 

  • Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Annu Rev Phytopathol 8:231–258

    Article  Google Scholar 

  • Machuca A, Ferraz A (2001) Hydrolytic and oxidative enzymes produced by white and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb Technol 29:386–391. doi:10.1016/S0141-0229(01)00417-3

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric. Develop Ind Mycol 5:5–20

    CAS  Google Scholar 

  • Martin F (2007) Fair trade in the underworld: the ectomycorrhizal symbiosis. In: Howard RJ, Gow NAR (eds) Biology of the fungal cell. Springer, Berlin, pp 291–308

    Chapter  Google Scholar 

  • Martínez AT, González AE, Valmaseda M, Dale BE, Lambregts MJ, Haw JF (1991) Solid-state NMR studies of lignin and plant polysaccharide degradation by fungi. Holzforschung 45:49–54. doi:10.1515/hfsg.1991.45.s1.49

    Article  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kues U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959. doi:10.1073/pnas.0809575106

    Article  CAS  Google Scholar 

  • Martinez AT, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Río JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13:96–107. doi:10.1111/j.1462-2920.2010.02312.x

    Article  CAS  Google Scholar 

  • McFee WW, Stone EL (1966) The persistence of decaying wood in the humus layers of northern forests. Soil Sci Soc Am J 29:432–436

    Article  Google Scholar 

  • McMillan J, Jennings EW, Mohagheghi A, Zuccarello M (2011) Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol Biofuels 4:29. doi:10.1186/1754-6834-4-29

    Article  CAS  Google Scholar 

  • Milagres AMF, Sales R (2001) Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme Microb Technol 28:522–526. http://dx.doi.org/10.1016/S0141-0229(00)00364-1

  • Milagres AMF, Arantes V, Medeiros CL, Machuca A (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme Microb Technol 30:562–565. doi:10.1016/S0141-0229(02)00015-7

    Article  CAS  Google Scholar 

  • Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb Technol 49:472–477. doi:10.1016/j.enzmictec.2011.08.004

    Article  CAS  Google Scholar 

  • Muller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865. doi:10.1104/pp. 109.139204

    Article  CAS  Google Scholar 

  • Murmannis L, Highley TL, Palmer JG (1988) The action of isolated brown-rot cell free culture filtrate, H2O2-FeII, and combination of both on wood. Wood Sci Technol 22:59–66

    Article  Google Scholar 

  • Nakagame S, Chandra RP, Kaddla JF, Saddler JN (2011a) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108:538–548. doi:10.1002/bit.22981

    Article  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Kaddla JF, Saddler JN (2011b) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102:4507–4517. doi:10.1016/j.biortech.2010.12.082

    Article  CAS  Google Scholar 

  • Newcombe D, Paszczynski A, Gajewska W, Kroger M, Feis G, Crawford R (2002) Production of small molecular weight catalysts and the mechanism of trinitrotoluene degradation by several Gloeophyllum species. Enzyme Microbial Technol 30:506–517. doi:10.1016/S0141-0229(02)00014-5

    Article  CAS  Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (2007) Demethoxylation of [O(14)CH (3)]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegr 19:555–565. doi:10.1007/s10532-007-9161-3

    Article  CAS  Google Scholar 

  • Nilsson T (1974) Comparative study on the cellulolytic activity of white-rot and brown-rot fungi. Mater Org 9:173–198

    Google Scholar 

  • Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4, 5-dimethoxycatechol and 2, 5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65:674–679

    CAS  Google Scholar 

  • Pratch J, Boenigk J, Isenbeck-Schroter M, Keppler F, Scholer FH (2001) Abiotic Fe(III) induced mineralization of phenolic substrates. Chemosphere 44:613-619. http://dx.doi.org/10.1016/S0045-6535(00)00490-2

    Google Scholar 

  • Qi W, Jellison J (2004) Induction and catalytic properties of an intracellular NADH-dependent 1,4-benzoquinone reductase from the brown rot fungus Gloeophyllum trabeum. Int J Biodegr Biodeter 54:53–60. doi:10.1016/j.ibiod.2004.02.001

    Article  CAS  Google Scholar 

  • Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen JCN, Johansen KS, Krogh KBRM, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree WP, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108(37):15079–15084. doi:10.1073/pnas.1105776108

    Article  CAS  Google Scholar 

  • Rättö M, Ritschkoff AC, Viikari L (1997) The effect of oxidative pretreatment on cellulose degradation by Postia placenta and Trichoderma reesei cellulases. Appl Microbiol Biotechnol 48:53–57. doi:10.1007/s002530051014

    Article  Google Scholar 

  • Ray MJ, Murphy RJ (2011) Methods. US Patent 2011/0053239 A1

  • Reese ET, Sui RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanisms of cellulose hydrolysis. J Bacteriol 59:485–497

    CAS  Google Scholar 

  • Ritschkoff AC (1996) Decay mechanisms of brown-rot fungi. VTT Publications 268, Espo

  • Rodriguez R, Parra C, Contreras D, Freer J, Baeza J (2001) Dihydroxybenzenes: driven Fenton reactions. Water Sci Technol 44:251–259

    CAS  Google Scholar 

  • Schilling JS, Tewalt JP, Duncan SM (2009) Synergy between pretreatment lignocellulose modification efficiency in two brown rot fungal systems. Appl Microbiol Biotechnol 84:465–475. doi:10.1007/s00253-009-1979-7

    Article  CAS  Google Scholar 

  • Schmidhalter DR, Canevascini G (1993) Purification and characterization of two cellobiohydrolases from the brown rot fungus Coniophora puteana (Schum ex Fr.) Krst. Arch Biochem Biophys 300:551–558. doi:10.1006/abbi.1993.1076

    Article  CAS  Google Scholar 

  • Shimokawa T, Nakamura M, Hayashi N, Ishihara M (2004) Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction. Holzforschung 58:305–310. doi:10.1515/HF.2004.047

    CAS  Google Scholar 

  • Snook ME, Hamilton GA (1974) Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent. J Am Chem Soc 96:860–869. doi:10.1021/ja00810a035

    Article  CAS  Google Scholar 

  • Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Bioref. doi:10.1002/bb

  • Sun QN, Qin TF, Li GY (2009) Chemical groups and structural characterization of brown-rotted Pinus massoniana lignin. Int J Polym Anal Charact 14:19–33. doi:10.1080/10236660802586459

    Article  CAS  Google Scholar 

  • Suzuki MR, Hung CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 8:2214–2223. doi:10.1111/j.1462-2920.2006.01160.x

    Article  CAS  Google Scholar 

  • Takao S (1965) Organic acid production by basidiomycetes. Appl Microbiol 13:732–737

    CAS  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn S, Liu Z, Zhai H, Sorlie M, Eijsink V (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Sci 330:219–222. doi:10.1126/science.1192231

    Article  CAS  Google Scholar 

  • Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, Kersten PJ, Cullen D (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610. doi:10.1128/AEM.00058-10

    Article  CAS  Google Scholar 

  • Wei D, Houtman CJ, Kapich AN, Hunt CG, Cullen D, Hammel KE (2010) Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta. Appl Environ Microbiol 76:2091–2097. doi:10.1128/AEM.02929-09

    Article  CAS  Google Scholar 

  • Wilcox WW, Parameswaran N, Liese W (1974) Ultrastructure of brown rot in wood treated with pentachlorophenol. Holzforschung 28:211–217. doi:10.1515/hfsg.1974.28.6.211

    Article  CAS  Google Scholar 

  • Wood TM, McCrae SI, Bhat KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260:37–43

    CAS  Google Scholar 

  • Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87:43–57. doi:10.1016/S0168-1656(00)00430-2

    Article  CAS  Google Scholar 

  • Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849. doi:10.1111/j.1462-2920.2008.01605.x

    Article  CAS  Google Scholar 

  • Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100. doi:10.1111/j.1462-2920.2010.02417.x

    Article  CAS  Google Scholar 

  • Yoon JJ, Cha CJ, Kim YS, Son DW, Kim YK (2007) The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J Microbiol Biotechnol 17:800–805

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the many graduate students and colleagues they have worked with over the years in advancing various aspects of our understanding of brown-rot decay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdeir Arantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arantes, V., Jellison, J. & Goodell, B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94, 323–338 (2012). https://doi.org/10.1007/s00253-012-3954-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3954-y

Keywords

Navigation