Skip to main content
Log in

Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Demethoxylation reactions in the cultures of the brown-rot fungi Gloeophyllum trabeum and Poria placenta were studied by determining the evolution of 14CO2 from a non-phenolic lignin model, β–O–4 dimer, [O14CH3]-labelled at position 4 in the A ring (model I), and from [O14CH3]-labelled vanillic acid (model II). The fungi were grown under oxygen or air atmosphere on an agar medium with or without spruce sapwood blocks. The dimeric model (I) was impregnated onto agar or wood block in cultures to clarify the possible effect of wood as growth substrate. In the case of vanillic acid (model II), birch wood was used. The effect of supplemented nutrient nitrogen (2 mM N) and glucose (0.1 or 1.0% w/v) on demethoxylation was also studied. G. trabeum enhanced the production of 14CO2 from the dimer in the presence of spruce wood blocks. It released 14CO2 from the methoxyl groups giving 30–60% of the applied activity in 8 weeks. P. placenta produced almost 30% 14CO2 from vanillic acid (model II) in 9 weeks under oxygen, but from the methoxyl group of the dimer only 3% of 14CO2 was evolved in 4 weeks. The biomasses determined as ergosterol assay showed variation from 14 to 226 μg g−1 dry weight of agar, and 2 to 9 μg g−1 of wood, but they did not correlate with the production of 14CO2. The results indicate that these brown-rot fungi possess different mechanisms for demethoxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agosin E, Jarpa S, Rojas E, Espejo E (1989) Solid state fermentation of pine sawdust by selected brown-rot fungi. Enzyme Microb Technol 11:11–517

    Article  Google Scholar 

  • Ander P, Eriksson K-E, Yu H-S (1984) Metabolism of lignin-derived aromatic acids by wood-rotting fungi. J Gen Microbiol 130:63–68

    CAS  Google Scholar 

  • Ander P, Stoytschev I, Eriksson K-E (1988) Cleavage and metabolism of methoxyl groups from vanillic and ferulic acids by brown-rot and soft-rot fungi. Cellulose Chem Technol 22:255–266

    CAS  Google Scholar 

  • Barajas-Aceves M, Hassan M, Tinoco R, Vazquez-Duhalt R (2002) Effect of pollutants on the ergosterol content as indicator of fungal biomass. J Microbiol Methods 50:227–236

    Article  CAS  Google Scholar 

  • Blanchette RA (1995) Degradation of lignocellulose complex in wood. Can J Bot 73(suppl. 1):S999–S1010

    Article  CAS  Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. CRV Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Cohen R, Jensen Jr KA, Houtman CJ, Hammel KE (2002) Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett 531:483–488

    Article  CAS  Google Scholar 

  • Cohen R, Suzuki MR, Hammel KE (2004) Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 70:324–331

    Article  CAS  Google Scholar 

  • Davis M, Schroeder HA, Maciel GE (1994) Solid state 13C Nuclear magnetic resonance studies of wood decay. III. Decay of Colorado blue spruce and paper birch by Postia placenta. Holzforschung 48:301–307

    CAS  Google Scholar 

  • Dey S, Maiti T, Bhattacharyya BC (1991) Lignin peroxidase production by a brown-rot fungus Polyporus osteiformis. J Ferment Bioengin 72:402–404

    Article  CAS  Google Scholar 

  • Dey S, Maiti TK, Bhattacharyya BC (1994) Production of some extracellular enzymes by a lignin peroxidase- producing brown-rot fungus, Polyporus osteiformis, and its comparative abilities for lignin degradation and dye decolorization. Appl Environ Microbiol 60:4216–4218

    CAS  Google Scholar 

  • Eikenes M, Hietala AM, Alfredsen G, Fossdal CG, Solheim H (2005) comparison of quantitative real-time PCR, chitin and ergosterol assays for monitoring colonization of Trametes versicolor in birch wood. Holzforschung 59:568–573

    Article  CAS  Google Scholar 

  • Enoki E, Itakura S, Tanaka H (1997) The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungi. J Biotechnol 53:265–272

    Article  CAS  Google Scholar 

  • Enoki A, Tanaka H, Fuse G (1988) Degradation of lignin-related compounds, pure cellulose, and wood components by white-rot and brown-rot fungi. Holzforschung 42:85–93

    CAS  Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, Berlin, pp 407

    Google Scholar 

  • Evans CS, Dutton MV, Guillén F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–240

    Article  CAS  Google Scholar 

  • Goodell B (2003) Brown-rot fungal degradation of wood: our evolving view. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation. ACS Symposium series 845, Washington DC, pp 97–118

    Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  • Goodell B, Liu J, Jellison J, Lu J, Paszczynski A, Fekete F (1996) Chelation activity and hydroxyl radical production mediated by low molecular weight phenolate compounds isolated from Gloeophyllum trabeum. In: Srebotnik E, Messner K (eds) Biotechnology in the pulp and paper industry, recent advances in applied and fundamental research. Facultas-Universitätsverlag, Vienna, pp 591–594

    Google Scholar 

  • Haider K, Trojanowski J (1980) A comparison of the degradation of 14C-labelled DHP and corn stalk lignins by micro- and macrofungi and bacteria. In: Kirk TK, Higuchi T, Chang M-m (eds) Lignin biodegradation: Microbiology, Chemistry and Applications, Vol I. CRC Press, USA, pp 111–134

    Google Scholar 

  • Hammel KE, Kapich AN, Jensen Jr KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay fungi. Enzyme Microb Technol 30:445–453

    Article  CAS  Google Scholar 

  • Hammel KE (2007) The hydroxyl radical as an agent of lignocellulose decay by fungi. Paper presented at the 10th International Conference in the Pulp and Paper Industry, Monona Terrace, Madison, WI, USA,10–14 July, 2007

  • Hatakka A (1985) Degradation of veratric acid and other lignin-related aromatic compounds by the white-rot fungus Pycnoporus cinnabarinus. Arch Microbiol 141:22–28

    Article  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A (eds) Lignin, humic substances and coal. Wiley-VCH, Germany, pp 129–180

    Google Scholar 

  • Hatakka AI, Lundell TK, Tervilä-Wilo ALM, Brunow G (1991) Metabolism of non-phenolic β–O–4 lignin model compounds by the white-rot fungus Phlebia radiata. Appl Microbiol Biotechnol 36:270–277

    Article  CAS  Google Scholar 

  • Hatakka AI, Uusi-Rauva AK (1983) Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi. Eur J Appl Microbiol Biotechnol 17:235–242

    Article  CAS  Google Scholar 

  • Highley TL, Murmanis L, Palmer JG (1985) Micromorphology of degradation in western hemlock and sweetgum by the brown-rot fungus Poria placenta. Holzforschung 39:73–78

    Article  CAS  Google Scholar 

  • Jellison J, Chandhoke V, Goodell B, Fekete FA (1991) The isolation and immunolocalization of iron-binding compounds produced by Gloeophyllum trabeum. Appl Microbiol Biotechnol 35:805–809

    Article  CAS  Google Scholar 

  • Jellison J, Connolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeterior Biodegradation 39:165–179

    Article  CAS  Google Scholar 

  • Jensen Jr KA, Houtman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711

    Article  CAS  Google Scholar 

  • Jin I, Nicholas DD, Kirk TK (1990a) Mineralization of the methoxyl carbon of isolated lignin by brown-rot fungi under solid substrate conditions. Wood Sci Technol 24:263–276

    Article  CAS  Google Scholar 

  • Jin I, Schulz TP, Nicholas DD (1990b) Structural characterization of brown-rotted lignin. Holzforschung 44:133–138

    Google Scholar 

  • Kerem Z, Bao W, Hammel KE (1998) Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete. Proc Natl Acad Sci USA 95:10373–10377

    Article  CAS  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446:49–54

    Article  CAS  Google Scholar 

  • Kirk TK (1975) Effects of brown rot fungus Lenzites trabea on lignin in spruce wood. Holzforschung 29:99–107

    Article  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (1992) Demethoxylation of a [O14CH3]-labelled lignin model compound by white-rot and brown-rot fungi. In: Kuwahara M, Shimada M (eds) Biotechnology in Pulp and Paper Industry. UNI Publishers Co, Ltd, Tokyo, pp 221–226

    Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (2006) Wood stimulates the demethoxylation of [O14CH3]-labelled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata. Arch Microbiol 185:307–315

    Article  CAS  Google Scholar 

  • Pasanen A-L, Yli-Pietilä K, Pasanen P, Kalliokoski P, Tarhanen J (1999) Ergosterol content in various fungal species and biocontaminated building materials. Appl Environ Microbiol 65:138–142

    CAS  Google Scholar 

  • Schlosser D, Fahr K, Karl W, Wetzstein H-G (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. Appl Environ Microbiol 69:2479–2483

    Article  Google Scholar 

  • Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 8:2214–2223

    Article  CAS  Google Scholar 

  • Shimada M, Akamatsu Y, Tokimatsu T, Mii K, Hattori T (1997) Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53:103–113

    Article  CAS  Google Scholar 

  • Varela E, Tien M (2003) Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation. Appl Environ Microbiol 69:6025–6031

    Article  CAS  Google Scholar 

  • Wang W, Gao P (2002) A peptide-mediated and hydroxyl radical HO.-involved oxidative degradation of cellulose by brown-rot fungi. Biodegradation 13:383–394

    Article  CAS  Google Scholar 

  • Wetzstein H-G, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: Identification of metabolites. Appl Environ Microbiol 63:4272–4281

    CAS  Google Scholar 

  • Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Academy of Finland, Center of Excellence “Microbial Resources Research Unit” grant no. 53305. We thank Mika Kalsi for the skilful technical assistance, Dr. Leena Räsänen for her help in statistical analysis, Tommi Timoharju and MSc Sari Galkin for helping in ergosterol analysis with HPLC, and Dr. Leena Suominen for her critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annele Hatakka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemenmaa, O., Uusi-Rauva, A. & Hatakka, A. Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta . Biodegradation 19, 555–565 (2008). https://doi.org/10.1007/s10532-007-9161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9161-3

Keywords

Navigation