Skip to main content

Wood-Rotting Fungi for Biofuel Production

  • Chapter
  • First Online:
Fungi in Fuel Biotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Lignocellulosic biomass (forest biomass and wastes, agricultural residues, and energy crops) have been focused on as potential materials for the second-generation bioethanol production because of their beneficial characteristics, including renewability, high annual yield, abundance, etc. Wood-rotting basidiomycetes play an important role in the carbon cycle as decomposers in forest ecosystems. Among these fungi, white-rot fungi are the only microbes capable of efficient depolymerization, degradation, and mineralization of all the components of lignocellulosic materials. Especially, white-rot fungi can degrade and remove lignin via the production of a diverse range of oxidizing enzymes, such as manganese peroxidase, lignin peroxidase, and versatile peroxidase. The enhancement of saccharification rate by wood-rotting fungi pretreatment has been widely reported. Different white-rot and brown-rot fungi genera, such as Phlebia, Pleurotus, Ceriporiopsis, Flammulina, Trametes, Irpex, Peniophora, Echinodontium, Punctularia, Cyathus, Daedalea, Schizophyllum, Lentinula, Ganoderma, Gloeophyllum, and Fomitopsis, have shown high potentials in the processes of bioethanol production. In this chapter, the applications of these fungi in biological pretreatment for lignocelluloses, direct fermentation of lignocellulosic materials to ethanol through consolidated bioprocessing (CBP) fermentation, and integrated fungal fermentation process (IFFP) are discussed. Finally, recent achievements in the field of metabolic engineering of white-rot fungi to enhance pretreatment efficiency and ethanol yield and to change the metabolic products are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J Biotechnol 123(1):71–77

    Article  CAS  Google Scholar 

  • Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94(2):323–338

    Article  CAS  Google Scholar 

  • Arimoto M, Yamagishi K, Wang J, Tanaka K, Miyoshi T, Kamei I, Kondo R, Mori T, Kawagishi H, Hirai H (2015) Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene. AMB Express 5(1):1–7

    Article  CAS  Google Scholar 

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198

    Article  CAS  Google Scholar 

  • Bao W, Fukushima Y, Jensen KA Jr, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354(3):297–300

    Article  CAS  Google Scholar 

  • Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, Yu Y, Liu R, Bridgwater AV (2017) Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sust Energ Rev 76:309–322

    Article  CAS  Google Scholar 

  • Caramelo L, Martínez MJ, Martínez AT (1999) A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimers. Appl Environ Microbiol 65(3):916–922

    Article  CAS  Google Scholar 

  • Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38(1):105–109

    Article  CAS  Google Scholar 

  • Conde-Mejía C, Jiménez-Gutiérrez A, El-Halwagi M (2012) A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf Environ Prot 90(3):189–202

    Article  CAS  Google Scholar 

  • De Jong JF, Ohm RA, De Bekker C, Wösten HAB, Lugones LG (2010) Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 310(1):91–95

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096–1258096

    Article  CAS  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64(1):75–90

    Article  Google Scholar 

  • Espejo E, Agosin E (1991) Production and degradation of oxalic acid by brown rot fungi. Appl Environ Microbiol 57(7):1980–1986

    Article  CAS  Google Scholar 

  • Ferraz A, Rodríguez J, Freer J, Baeza J (2001) Biodegradation of Pinus radiata softwood by white- and brown-rot fungi. World J Microbiol Biotechnol 17:31–34

    Article  CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  Google Scholar 

  • Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74(1):78–88

    Article  CAS  Google Scholar 

  • García-Torreiro M, López-Abelairas M, Lu-Chau TA, Lema JM (2016) Fungal pretreatment of agricultural residues for bioethanol production. Ind Crop Prod 89:486–492

    Article  CAS  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242(2):329–341

    Article  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2 -requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114(3):1077–1083

    Article  CAS  Google Scholar 

  • Green F III, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegrad 39(2–3):113–124

    Article  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11(3):349–355

    Article  CAS  Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzym Microb Technol 13(1):15–18

    Article  CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzym Microb Technol 30(4):445–453

    Article  CAS  Google Scholar 

  • Heinfling A, Ruiz-Dueñas FJ, Martínez MJ, Bergbauer M, Szewzyk U, Martínez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428(3):141–146

    Article  CAS  Google Scholar 

  • Hermosilla E, Rubilar O, Schalchli H, da Silva AS, Ferreira-Leitao V, Diez MC (2018) Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments. Waste Manag 79:240–250

    Article  CAS  Google Scholar 

  • Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100(3):1238–1245

    Article  CAS  Google Scholar 

  • Hiyama R, Gisusi S, Harada A (2012) Effect of steam treatment for the enzymic saccharification of waste mushroom medium after cultivation of shiitake mushroom (Lentinula edodes) and enokitake mushroom (Flammulina velutipes). J Wood Sci 58:446–452

    Article  CAS  Google Scholar 

  • Hiyama R, Gisusi S, Harada A (2013) Effect of increased harvests on saccharification ratio of waste mushroom medium from the cultivation of shiitake mushroom (Lentinula edodes). J Wood Sci 59:88–93

    Article  CAS  Google Scholar 

  • Horisawa S, Ando H, Ariga O, Sakuma Y (2015) Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. Bioresour Technol 197:37–41

    Article  CAS  Google Scholar 

  • Horton JS, Palmer GE, Smith WJ (1999) Regulation of dikaryon-expressed genes by FRT1 in the basidiomycete Schizophyllum commune. Fungal Genet Biol 26:33–47

    Article  CAS  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 103:14871–14876

    Article  CAS  Google Scholar 

  • Isroi MR, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259

    Google Scholar 

  • Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–278

    Article  CAS  Google Scholar 

  • Jagtap SS, Rao CV (2018) Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 102(21):9015–9036

    Article  CAS  Google Scholar 

  • Kamei I, Daikoku C, Tsutsumi Y, Kondo R (2008) Saline-dependent regulation of manganese peroxidase genes in the hypersaline-tolerant white rot fungus Phlebia sp. strain MG-60. Appl Environ Microbiol 74(9):2709–2716

    Article  CAS  Google Scholar 

  • Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R (2012a) Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112:137–142

    Article  CAS  Google Scholar 

  • Kamei I, Hirota Y, Meguro S (2012b) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141

    Article  CAS  Google Scholar 

  • Kamei I, Nitta T, Nagano Y, Yamaguchi M, Yamasaki Y, Meguro S (2014a) Evaluation of spent mushroom waste from Lentinula edodes cultivation for consolidated bioprocessing fermentation by Phlebia sp. MG-60. Int Biodeterior Biodegrad 94:57–62

    Article  CAS  Google Scholar 

  • Kamei I, Hirota Y, Meguro S (2014b) Direct fungal production of ethanol from high-solids pulps by the ethanol-fermenting white-rot fungus Phlebia sp. MG-60. Bioresources 9(3):5114–5124

    Article  Google Scholar 

  • Keller F, Hamilton J, Nguyen Q (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27–41

    Article  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  CAS  Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260(5):2609–2612

    CAS  Google Scholar 

  • Khuong LD, Kondo R, De Leon R, Kim Anh T, Shimizu K, Kamei I (2014a) Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int Biodeterior Biodegrad 88:62–68

    Article  CAS  Google Scholar 

  • Khuong LD, Kondo R, Leon RD, Kim Anh T, Meguro S, Shimizu K, Kamei I (2014b) Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 167:33–40

    Article  CAS  Google Scholar 

  • Koenigs JW (1974) Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes. Arch Microbiol 99(1):129–145

    Article  CAS  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display – applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidase from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169(2):247–250

    Article  CAS  Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81(1):33–44

    Article  CAS  Google Scholar 

  • Lee JW, Koo BW, Choi JW, Choi DH, Choi IG (2008) Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour Technol 99:2736–2741

    Article  CAS  Google Scholar 

  • Li X, Kondo R, Sakai K (2002a) Biodegradation of sugarcane bagasse with marine fungus Phlebia sp. MG-60. J Wood Sci 48(2):159–162

    Article  Google Scholar 

  • Li X, Kondo R, Sakai K (2002b) Studies on hypersaline-tolerant white-rot fungi I: screening of lignin-degrading fungi in hypersaline conditions. J Wood Sci 48:147–152

    Article  CAS  Google Scholar 

  • Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review. J Basic Microbiol 50(1):5–20

    Article  CAS  Google Scholar 

  • Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Ma F, Huang X, Ke M, Shi Q, Chen Q, Shi C, Zhang K, Zhang X, Yu H (2017) Role of selective fungal delignification in overcoming the saccharification recalcitrance of bamboo culms. ACS Sustain Chem Eng 5(10):8884–8894

    Article  CAS  Google Scholar 

  • Machado ADS, Ferraz A (2017) Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour Technol 225:17–22

    Article  CAS  Google Scholar 

  • Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzym Microb Technol 40(3):426–432

    Article  CAS  Google Scholar 

  • Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez ÁT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237(2):424–432

    Article  Google Scholar 

  • Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204

    Google Scholar 

  • Mattila H, Kuuskeri J, Lundell T (2017) Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species. Bioresour Technol 225:254–261

    Article  CAS  Google Scholar 

  • Meehnian H, Jana AK, Jana MM (2017) Pretreatment of cotton stalks by synergistic interaction of Daedalea flavida and Phlebia radiata in co-culture for improvement in delignification and saccharification. Int Biodeterior Biodegrad 117:68–77

    Article  CAS  Google Scholar 

  • Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzym Microb Technol 36:294–300

    Article  CAS  Google Scholar 

  • Mizuno R, Ichinose H, Honda M, Takabatake K, Sotome I, Takai T, Maehara T, Okadome H, Isobe S, Gau M, Kaneko S (2009) Use of whole crop sorghums as a raw material in consolidated bioprocessing bioethanol production using Flammulina velutipes. Biosci Biotech Bioch 73(7):1671–1673

    Article  CAS  Google Scholar 

  • Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzym Microb Technol 49(5):472–477

    Article  CAS  Google Scholar 

  • Mori T, Kako H, Sumiya T, Kawagishi H, Hirai H (2016) Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624. J Biotechnol 239:83–89

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Motoda T, Yamaguchi M, Tsuyama T, Kamei I (2019) Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. J Biosci Bioeng 127(1):66–72

    Article  CAS  Google Scholar 

  • Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T (2011) Efficient gene targeting in δCc.ku70 or δCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48(10):939–946

    Article  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    Article  CAS  Google Scholar 

  • Ohm RA, De Jong JF, Berends E, Wang F, Wösten HAB, Lugones LG (2010) An efficient gene deletion procedure for the mushroom-forming basidiomycete Schizophyllum commune. World J Microbiol Biotechnol 26:1919–1923

    Article  Google Scholar 

  • Okamoto K, Imashiro K, Akizawa Y, Onimura A, Yoneda M, Nitta Y, Maekawa N, Yanase H (2010) Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol Lett 32:909–913

    Article  CAS  Google Scholar 

  • Okamoto K, Nitta Y, Maekawa N, Yanase H (2011) Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzym Microb Technol 48:273–277

    Article  CAS  Google Scholar 

  • Pasquini D, Pimenta MTB, Ferreira LH, Curvelo AAS (2005) Sugar cane bagasse pulping using supercritical CO2 associated with CO-solvent 1-butanol/water. J Supercrit Fluids 34:125–131

    Article  CAS  Google Scholar 

  • Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57(14):6305–6317

    Article  CAS  Google Scholar 

  • Pereira AA, Martins GF, Antunes PA, Conrrado R, Pasquini D, Job AE, Curvelo AAS, Ferreira M, Riul A Jr, Constantino CJL (2007) Lignin from sugar cane bagasse: extraction, fabrication of nanostructured films, and application. Langmuir 23(12):6652–6659

    Article  CAS  Google Scholar 

  • Phan CW, Sabaratnam V (2012) Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol 96:863–873

    Article  CAS  Google Scholar 

  • Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003) Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res 3:185–189

    Article  CAS  Google Scholar 

  • Rodríguez-Chong A, Ramírez JA, Garrote G, Vázquez M (2004) Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J Food Eng 61(2):143–152

    Article  Google Scholar 

  • Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012) Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol 78(15):5341–5352

    Article  CAS  Google Scholar 

  • Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol 104:459–465

    Article  CAS  Google Scholar 

  • Sasaki C, Takada R, Watanabe T, Honda Y, Karita S, Nakamura Y, Watanabe T (2011) Surface carbohydrate analysis and bioethanol production of sugarcane bagasse pretreated with the white rot fungus, Ceriporiopsis subvermispora and microwave hydrothermolysis. Bioresour Technol 102(21):9942–9946

    Google Scholar 

  • Schilling JS, Tewalt JP, Duncan SM (2009) Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl Microbiol Biotechnol 84(3):465–475

    Article  CAS  Google Scholar 

  • Seo YJ, Oh DS, Lee JW (2013) Study on the possibility of waste mushroom medium as a biomass resource for biorefinery. J Ind Eng Chem 19:1535–1539

    Article  CAS  Google Scholar 

  • Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    Article  CAS  Google Scholar 

  • Shirkavand E, Baroutian S, Gapes DJ, Young BR (2017) Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Convers Manag 142:13–19

    Article  CAS  Google Scholar 

  • Sugano SS, Suzuki H, Shimokita E, Chiba H, Noji S, Osakabe Y, Osakabe K (2017) Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Sci Rep 7(1):1260

    Article  CAS  Google Scholar 

  • Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad 75:176–180

    Article  CAS  Google Scholar 

  • Suhardi VSH, Prasai B, Samaha D, Boopathy R (2013) Evaluation of pretreatment methods for lignocellulosic ethanol production from energy cane variety L 79-1002. Int Biodeterior Biodegrad 85:683–687

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643

    Article  CAS  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Kouya T, Tanaka T (2010) Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw. J Biosci Bioeng 110:449–452

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete shrysosporium Burds. Science 221:661–663

    Article  CAS  Google Scholar 

  • Tri CL, Khuong LD, Kamei I (2018) The improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int Biodeterior Biodegrad 133:86–92

    Article  CAS  Google Scholar 

  • Tsuyama T, Yamaguchi M, Kamei I (2017) Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60. Bioresour Technol 238:241–247

    Article  CAS  Google Scholar 

  • Tuor U, Wariishi H, Gold MH, Schoemaker HE (1992) Oxidation of phenolic arylglycerol β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an α-carbonyl model compound. Biochemistry 31(21):4986–4995

    Article  CAS  Google Scholar 

  • Umezawa T, Shimada M, Higuchi T, Kusai K (1986) Aromatic ring cleavage of β-O-4 lignin substructure model dimers by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett 205(2):287–292

    Article  CAS  Google Scholar 

  • Van Wetter M-A, Schuren FHJ, Schuurs TA, Wessels JGH (1996) Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol Lett 140(2–3):265–269

    Article  Google Scholar 

  • Vasco-Correa J, Ge X, Li Y (2016) Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresour Technol 203:118–123

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2010) Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzym Microb Technol 47:31–36

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2011) Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresour Technol 102:9788–9793

    Article  CAS  Google Scholar 

  • Wang J, Hirabayashi S, Mori T, Kawagishi H, Hirai H (2016a) Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624. J Biosci Bioeng 122(1):17–21

    Article  CAS  Google Scholar 

  • Wang J, Suzuki T, Dohra H, Takigami S, Kako H, Soga A, Kamei I, Mori T, Kawagishi H, Hirai H (2016b) Analysis of ethanol fermentation mechanism of ethanol producing white-rot fungus Phlebia sp. MG-60 by RNA-seq. BMC Genomics 17(1):616

    Article  CAS  Google Scholar 

  • Wang R, You T, Yang G, Xu F (2017) Efficient short time white rot-brown rot fungal pretreatments for the enhancement of enzymatic saccharification of corn cobs. ACS Sustain Chem Eng 5(11):10849–10857

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1989a) Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry 28(14):6017–6023

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Renganathan V, Gold MH (1989b) Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem 264(24):14185–14191

    CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176(1):269–275

    Article  CAS  Google Scholar 

  • Wen F, Sun J, Zhao H (2004) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    Article  CAS  Google Scholar 

  • Wen JL, Sun SL, Xue BL, Sun RC (2013) Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung 67(6):613–627

    Article  CAS  Google Scholar 

  • Yamagishi K, Kimura T, Watanabe T (2011) Treatment of rice straw with selected Cyathus stercoreus strains to improve enzymatic saccharification. Bioresour Technol 102:6937–6943

    Article  CAS  Google Scholar 

  • Yamasaki Y, Yamaguchi M, Yamagishi K, Hirai H, Kondo R, Kamei I, Meguro S (2014) Expression of a manganese peroxidase isozyme 2 transgene in the ethanologenic white rot fungus Phlebia sp. strain MG-60. SpringerPlus 3(1):699

    Article  CAS  Google Scholar 

  • Yu H, Guo G, Zhang X, Yan K, Xu C (2009a) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175

    Article  CAS  Google Scholar 

  • Yu J, Zhang J, He J, Liu Z, Yu Z (2009b) Combination of mild physical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501

    Article  CAS  Google Scholar 

  • Zeng Y, Yang X, Yu H, Zhang X, Ma F (2012) The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo. Bioresour Technol 114:437–442

    Article  CAS  Google Scholar 

  • Zhang X, Xu C, Wang H (2007a) Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104:149–151

    Article  CAS  Google Scholar 

  • Zhang X, Yu H, Huang H, Liu Y (2007b) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad 60(3):159–164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Kamei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamei, I. (2020). Wood-Rotting Fungi for Biofuel Production. In: Salehi Jouzani, G., Tabatabaei, M., Aghbashlo, M. (eds) Fungi in Fuel Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-44488-4_6

Download citation

Publish with us

Policies and ethics