Skip to main content
Log in

Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this work, pyrolysis–molecular beam mass spectrometry analysis coupled with principal components analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bagley ST, Richter DL (2002) The mycota. In: Osiewacz HD (ed) Industrial applications, vol 10. Springer, Berlin, pp 327–341

  2. Goodell B (2003) In: Goodell B, Nicholas D, Schultz T (eds) Wood deterioration and preservation: advances in our changing world. American Chemical Society Series. Oxford University Press, New York, pp 97–118

  3. Cowling EB (1961) Technical bulletin 1258. US Department of Agriculture, Washington, p 79

    Google Scholar 

  4. Kirk TK, Highley TL (1973) Phytopathology 63:1338–1342

    CAS  Google Scholar 

  5. Agosin E, Jarpa S, Rojas E, Espejo E (1989) Enzyme Microb Technol 11:511–517

    Article  CAS  Google Scholar 

  6. Ander P, Stoytschev I, Eriksson K-E (1988) Cellul Chem Technol 22:255–266

    CAS  Google Scholar 

  7. Enoki A, Tanaka H, Fuse G (1988) Holzforschung 42:85–93

    Article  CAS  Google Scholar 

  8. Filley TR, Hatcher PG, Shortle W (2000) Org Geochem 31:181–198

    Article  CAS  Google Scholar 

  9. Jin L, Schultz TP, Nichols DD (1990) Holzforschung 44:133–138

    Article  Google Scholar 

  10. Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Biodegradation 19:555–565

    Article  CAS  PubMed  Google Scholar 

  11. Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  12. Arantes V, Milagres AMF (2009) Quim Nova (in press)

  13. Arantes V, Milagres AMF (2006) J Chem Technol Biotechnol 81:413–419

    Article  CAS  Google Scholar 

  14. Enoki A, Itakura S, Tanaka H (1997) J Biotechnol 53:265–272

    Article  CAS  Google Scholar 

  15. Kerem Z, Jensen KA, Hammel KE (1999) FEBS Lett 446:790–797

    Article  Google Scholar 

  16. Paszczynski A, Crawford R, Funk D, Goodell B (1999) Appl Environ Microbiol 65:674–679

    CAS  PubMed  Google Scholar 

  17. Arantes V, Milagres AMF (2006) J Hazard Mater 141:273–279

    Article  PubMed  Google Scholar 

  18. Arantes V, Baldocchi C, Milagres AMF (2006) Chemosphere 63:1764–1772

    Article  CAS  PubMed  Google Scholar 

  19. Contreras D, Rodríguez J, Freer J, Schwederski B, Kaim W (2007) J Biol Inorg Chem 12:1055–1061

    Article  CAS  PubMed  Google Scholar 

  20. Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Org Geochem 33:111–124

    Google Scholar 

  21. Xu G, Goodell B (2001) J Biotechnol 87:43–57

    Google Scholar 

  22. Jin L, Nicholas DD, Kirk TK (1990) Wood Sci Technol 24:263–276

    Article  CAS  Google Scholar 

  23. Gierer J, Yang E, Reitberger T (1992) Holzforschung 46:495–504

    Article  CAS  Google Scholar 

  24. Gierer J (1997) Holzforschung 51:34–46

    Article  CAS  Google Scholar 

  25. Lanzalunga O, Bietti M (2000) J Photoch Photobio B 56:85–108

    Article  CAS  Google Scholar 

  26. Machado AEH, Furuyama AM, Falone SZ, Ruggiero R, Perez DDS, Castellan A (2000) Chemosphere 40:115–124

    Article  CAS  PubMed  Google Scholar 

  27. Kelley SS, Jellison J, Goodell B (2002) FEMS Microbiol Lett 209:107–111

    Article  CAS  PubMed  Google Scholar 

  28. Kelley SS, Rowell RM, Davis M, Jurich C, Ibach R (2004) Biomass Bioenerg 27:77–88

    Article  CAS  Google Scholar 

  29. Evans RJ, Milne TA (1987) Energ Fuel 1:123–137

    Article  CAS  Google Scholar 

  30. Martens H, Naes T (1991) Multivariate calibration. Wiley, New York, 419 pp

    Google Scholar 

  31. Wold S, Ebensen K, Geladi P (1987) Chemometr Intelligent Lab Syst 2:37–52

    Article  CAS  Google Scholar 

  32. Filley TR, Minard RD, Hatcher PG (1999) Org Geochem 30:607–621

    Article  CAS  Google Scholar 

  33. Barr DP, Aust SD (1994) Environ Sci Technol 28:78–87

    Article  Google Scholar 

  34. Wayman M, Chua MGS (1979) Can J Chem 57:2612–2616

    Article  CAS  Google Scholar 

  35. Yelle D, Raph J, Lu F, Hammer KE (2008) Environ Microbiol 10:1844–1849

    Article  CAS  PubMed  Google Scholar 

  36. Challinor JM (1995) J Anal Appl Pyrol 35:93–107

    Article  CAS  Google Scholar 

  37. Hatcher PG, Nanny MA, Minard RD, Dible SD, Carson DM (1995) Org Geochem 23:881–888

    Article  CAS  Google Scholar 

  38. Filley TR, Nierop KGJ, Wang Y (2006) Org Geochem 37:711–727

    Article  CAS  Google Scholar 

  39. Harvey PJ, Schoemaker HE, Palmer JM (1986) Document IRG/WP/1310, International Research Group on Wood Preservation

  40. Highley TL, Dashek WV (1998) In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor & Francis, London, pp 15–36

  41. Hatcher PG, Minard RD (1995) Org Geochem 23:991–994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the support of the Department of Earth and Atmospheric Sciences at Purdue University for the 13C-TMAH thermochemolysis work, the Wood Utilization Research Center at the University of Maine for the financial support for the collaborative research conducted at Purdue University, and support from the National Renewable Energy Laboratory in Golden, Colorado, for their MBMS facilities and support staff. V.A. is also grateful to the Coordination for the Improvement of Higher Level Personnel (CAPES-Brazil) Grant No. 5192/06-4 for the financial support for his stay at the Wood Science and Technology Laboratories at the University of Maine, Orono, Maine, USA. This is paper 3058 of the Maine Agricultural and Forest Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Goodell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arantes, V., Qian, Y., Kelley, S.S. et al. Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood. J Biol Inorg Chem 14, 1253–1263 (2009). https://doi.org/10.1007/s00775-009-0569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0569-6

Keywords

Navigation