Skip to main content
Log in

LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae offer potential for numerous commercial applications, among them the production of long-chain polyunsaturated fatty acids (LC-PUFAs). These valuable fatty acids are important for a variety of nutraceutical and pharmaceutical purposes, and the market for these products is continually growing. An appropriate ratio of LC-PUFA of the ω-3 and ω-6 groups is vital for “healthy” nutrition, and adequate dietary intake has strong health benefits in humans. Microalgae of diverse classes are primary natural producers of LC-PUFA. This mini-review presents an introductory overview of LC-PUFA-related health benefits in humans, describes LC-PUFA occurrence in diverse microalgal classes, depicts the major pathways of their biosynthesis in microalgae, and discusses the prospects for microalgal LC-PUFA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarsetoey H, Aarsetoey R, Lindner T, Staines H, Harris WS, Nilsen DWT (2011) Low levels of the omega-3 index are associated with sudden cardiac arrest and remain stable in survivors in the subacute phase. Lipids 46:151–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AFSSA (2001) AFSSA Saisine no. 2001-SA-0082: Avis de l’Agence française de sécurité sanitaire des aliments relatif à la demande d’évaluation de la démonstration de l’équivalence en substance d’une microalgue Odontella aurita avec des algues autorisées, AFSSA, 2001

  • Agostoni C, Marangoni F, Giovannini M, Riva E, Galli CM (1998) Long-chain polyunsaturated fatty acids, infant formula, and breastfeeding. Lancet 352:1703–1704

    Article  CAS  PubMed  Google Scholar 

  • Arao T, Sakaki T, Yamada M (1994) Biosynthesis of polyunsaturated lipids in the diatom, Phaeodactylum tricornutum. Phytochemistry 36:629–635

    Article  CAS  Google Scholar 

  • Bairati I, Roy L, Meyer F (1992) Double-blind, randomized, controlled trial of fish oil supplements in prevention of recurrence of stenosis after coronary angioplasty. Circulation 85:950–956

    Article  CAS  PubMed  Google Scholar 

  • Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499

    Article  CAS  Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Article  Google Scholar 

  • Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91

    Article  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Cohen Z (2002a) Accumulation of arachidonic acid and triacylglycerols in the microalga Parietochloris incisa (Chlorophyceae). Phytochemistry 60:135–143

    Article  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002b) Lipid and fatty acid composition of the green alga Parietochloris incisa. Phytochemistry 60:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z (2002c) Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chlorophyceae): radiolabeling studies. Lipids 37:209–216

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1988) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Boswell K, Koskelo EK, Carl L, Galza S, Hensen DJ, Williams KD, Kyle DJ (1996) Preclinical evaluation of single cell oils that are highly enriched with arachidonic acid and docosahexaenoic acid. Food Chem Toxicol 34:585–593

    Article  CAS  PubMed  Google Scholar 

  • Bousquet M, Saint-Pierre M, Julien C, Salem C Jr, Gicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 22:1213–1225

    Article  CAS  PubMed  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47

    Article  CAS  Google Scholar 

  • Carlson SE, Werkman SH, Peeples JM, Cooke RJ, Tolley EA (1993) Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci 90:1073–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini Zittelli G, Lavista F, Batianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid (EPA) by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312

    Article  CAS  Google Scholar 

  • Cinti DL, Cook L, Nagi NN, Suneja SK (1992) The fatty acid chain elongation system of mammalian endoplasmic reticulum. Prog Lipid Res 31:1–51

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z (1994) Production potential of eicosapentaenoic acid by Monodus subterraneus. J Am Oil Chem Soc 71:941–946

    Article  CAS  Google Scholar 

  • Cohen Z (1999) Production of polyunsaturated fatty acids by the microalga Porphyridium cruentum. In: Cohen Z (ed) Production of chemicals by microalgae. Taylor and Francis, London, pp 1–24

    Google Scholar 

  • Cohen Z, Khozin-Goldberg I (2005) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. Amer Oil Chem Soc, Champaign, pp 53–72

    Google Scholar 

  • Cohen Z, Didi S, Heimer YM (1992) Overproduction of γ-linolenic and eicosapentaenoic acids by algae. Plant Physiol 98:569–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor WE, Prince MJ, Ullmann D, Riddle M, Hatcher L, Smith FE, Wilson D (1993) The hypotriglyceridemic effect of fish oil in adult-onset diabetes without adverse glucose control. Ann NY Acad Sci 683:337–340

    Article  CAS  PubMed  Google Scholar 

  • Das UN (2003) Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition 19:62–65

    Article  CAS  PubMed  Google Scholar 

  • Domergue F, Lerchl J, Zahringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  CAS  PubMed  Google Scholar 

  • Domergue F, Abbadi A, Zähringer U, Moreau H, Heinz E (2005) In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161:115–134

    Article  CAS  Google Scholar 

  • Eritsland J, Arnesen H, Gronseth K, Gronseth KD, Fjeld NB, Abdelnoor M (1996) Effect of dietary supplementation with n-3 fatty acids on coronary artery bypass graft patency. Am J Cardiol 77:31–36

    Article  CAS  PubMed  Google Scholar 

  • Fan Y-Y, Chapkin RS (1998) Importance of dietary γ-linolenic acid in human health and nutrition. J Nut 128:1411–1414

    Article  CAS  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  CAS  PubMed  Google Scholar 

  • Guihéneuf F, Fouqueray M, Mimouni V, Ulmann L, Jacquette B, Tremblin G (2010) Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol 22:629–638

    Article  CAS  Google Scholar 

  • Guiry MD, Guiry GM (2011) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at http://www.algaebase.org

  • Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J, Zohar Y, Place AR (2002) Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture 213:347–362

    Article  CAS  Google Scholar 

  • Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG (2006) Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41:739–747

    Article  CAS  PubMed  Google Scholar 

  • Henderson RJ, Mackinlay EE (1992) Radiolabeling studies of lipids in the marine cryptomonad Chroomonas salina in relation to fatty acid desaturation. Plant Cell Physiol 33:395–406

    CAS  Google Scholar 

  • Hodgson P, Henderson R, Sargent J, Leftley J (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. J Appl Phycol 3:169–181

    Article  CAS  Google Scholar 

  • Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I (2008) Metabolic engineering of omega3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362

    Article  CAS  PubMed  Google Scholar 

  • Horrobin DF, Huang YS (1987) The role of linoleic acid and its metabolites in the lowering of plasma cholesterol and the prevention of cardiovascular disease. Int J Cardiol 17:173–180

    Article  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Ofir R, Cohen Z (2009) Cloning and characterization of the ∆6 polyunsaturated fatty acid elongase from the green microalga Parietochloris incisa. Lipids 44:545–554

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Cohen Z (2010) Cloning and characterization of the ∆12, ∆6 and ∆5 desaturases from the green microalga Parietochloris incisa. Lipids 45:519–530

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Cohen Z (2011) Selection of a ∆5 desaturase-defective mutant of the microalga Parietochloris incisa: the mutation site and effect on expression of LC-PUFA biosynthetic genes. Appl Microbiol Biotechnol 90:249–256

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn S, van Boxtel MP, Ocké M, Verschuren WM, Kromhout D, Launer LJ (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Hajiro-Nakanishi K, Sano H, Miyachi S (1995) Polyunsaturated fatty acids and betaine lipids from Pavlova lutheri. Plant Cell Physiol 36:1607–1611

    CAS  Google Scholar 

  • Khozin I, Adlerstein D, Bigogno C, Heimer YM, Cohen Z (1997) Elucidation of the biosynthesis of EPA in the microalga Porphyridium cruentum II: radiolabeling studies. Plant Physiol 114:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002a) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J Phycol 38:991–994

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Didi-Cohen S, Shayakhmetova I, Cohen Z (2002b) Elucidation of the biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus. J Phycol 38:745–756

    Article  CAS  Google Scholar 

  • Koletzko B, Braun M (1991) Arachidonic acid and early human growth: is there a relation? Ann Nutr Metabol 35:128–131

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel Fish LJ (2002) Consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  • Kyle DJ (1996) Production and use of a single cell oil which is highly enriched in docosahexaenoic acid. Lipid Tech 8:107–111

    Google Scholar 

  • Kyle DJ (1997) Production and use of a single cell oil highly enriched in arachidonic acid. Lipid Tech 9:116–121

    CAS  Google Scholar 

  • Kyle DJ (2001) The large-scale production and use of a single-cell oil highly enriched in docosahexaenoic acid. In: Omega-3 fatty acids. Chapter 8, ACS Symposium Series, Vol. 788, American Chemical Society, pp 92–107

  • Lavens P, Sorgeloos P (1996) Manual on the production and use of life food for aquaculture. FAO Fish Tech Pap 361:7–42

    Google Scholar 

  • Le HD, Meisel JA, deMeijer VE, Gura KM, Puder M (2009) The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 81:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblond JD, Dahmen JL, Evens TJ (2010) Mono- and digalactosyldiacylglycerol composition of dinoflagellates. IV. Temperature-induced modulation of fatty acid regiochemistry as observed by electrospray ionization/mass spectrometry. Eur J Phycol 45:13–18

    Article  CAS  Google Scholar 

  • Lippmeier JC, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44:621–630

    Article  CAS  PubMed  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci. doi:https://doi.org/10.1039/c0ee00593b

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute University of California, Berkeley

    Google Scholar 

  • Makrides MM, Neumann K, Simmer J, Pater Gibson R (1995) Are long-chain polyunsaturated fatty acids essential in infancy? Lancet 345:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Meireles LA, Guedes AC, Malcata FX (2003) Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. J Agric Food Chem 51:2237–2241

    Article  CAS  PubMed  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthetases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Cirpus P, Ott C, Schlecker R, Zähringer U, Heinz E (2003) Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemicaland molecular evidence for the involvement of a D4-fatty acyl group desaturation. Biochem 42:9779–9788

    Article  CAS  Google Scholar 

  • Meyer A, Kirsch H, Domergue F, Abbadi A, Sperling P, Bauer J, Cirpus P, Zank TK, Moreau H, Roscoe TJ, Zähringer U, Heinz E (2004) Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 45:1899–1909

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Sánchez JL, García Camacho F, López Alonso D (1992) EPA from Isochrysis galbana. Growth conditions and productivity. Process Biochemistry 27:299–306

    Article  CAS  Google Scholar 

  • Molina-Grima E, Garcia Camacho F, Acien Fernandez FG (1999) Production of EPA from Phaeodactylum tricornutum. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 57–92

    Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Napier JA (2007) The production of unusual fatty acids in transgenic plants. Ann Review Plant Biol 58:295–319

    Article  CAS  Google Scholar 

  • Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:330–337

    Article  CAS  PubMed  Google Scholar 

  • Nitsan Z, Mokady S, Sukenik AJ (1999) Enrichment of poultry products with omega3 fatty acids by dietary supplementation with the alga Nannochloropsis and mantur oil. Agric Food Chem 47:5127–5132

    Article  CAS  Google Scholar 

  • Okuyama H, Kobayashi T, Watanabe S (1996) Dietary fatty acids the N-6/N-3 balance and chronic diseases. Excess linoleic acid and the relative N-3 deficiency syndrome seen in Japan. Prog Lipid Res 35:4409–4457

    Article  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Leonard AE, Huang Y-S, Chuang L-T, Mukerji P (2004) Identification of two novel microalgal enzymes involved in the conversion of the ω-3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J 384:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Liu Q, Mackenzie AM, Shrestha P, Mansour MP, Robert SS, Frampton DF, Blackburn SI, Nichols PD, Singh SP (2010a) Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar Biotechnol 12:430–438

    Article  CAS  Google Scholar 

  • Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP (2010b) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with ω-3-preference from the marine microalga Micromonas pusilla. Metab Eng 12:233–240

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Beaudoin F, Fraser T, Stobart AK, Napier JA, Lazarus CM (2002) Identification of a cDNA encoding a novel C18-D9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett 510:159–165

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J, Stobart A, Lazarus C (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotech 10:631–640

    Article  CAS  Google Scholar 

  • Ratledge C (1998) Opportunities of marine microorganisms for the production of polyunsaturated fatty acids. In: Le Gal Y, Muller-Feuga A (eds) Marine organisms for industry. Plouzane, France, pp 18–25

    Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal lipids: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160

    Article  Google Scholar 

  • Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Article  Google Scholar 

  • Řezanka T, Petránková M, Cepák V, Přibyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269

    Article  CAS  Google Scholar 

  • Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    Article  CAS  Google Scholar 

  • Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotech 84:1–10

    Article  CAS  Google Scholar 

  • Salem N Jr, Moriguchi T, Greiner RS, McBride K, Ahmad A, Catalan JN, Slotnick B (2001) Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J Mol Neurosci 16:299–308

    Article  CAS  PubMed  Google Scholar 

  • Sayanova OV, Napier JA (2004) Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65:147–158

    Article  CAS  PubMed  Google Scholar 

  • Sayanova O, Haslam RP, Calerón MV, López NR, Worthy C, Rooks P, Allen MJ, Napier JA (2011) Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry 72:594–600

    Article  CAS  PubMed  Google Scholar 

  • Schneider JC, Roessler P (1994) Radiolabeling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae), an oleaginous marine alga. J Phycol 30:594–598

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:1–10

    Article  CAS  Google Scholar 

  • Seto A, Kumasaka K, Hosaka M, Kojima E, Kashiwakura M, Kato T (1992) Production of eicosapentaenoic acid by a marine microalgae and its commercial utilization for aquaculture. In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oils. American Oil Chemists’ Society, Champaign, pp 219–234

    Google Scholar 

  • Sijtsma L, De Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2008) The importance of the ω-6/ω-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Singh A, Ward OP (1996) Production of high yields of docosahexaenoic acid by Thraustochytrium roseum ATCC 28210. J Ind Microbiol 16:370–373

    Article  CAS  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Solovchenko A, Merzlyak M, Khozin-Goldberg I, Cohen Z, Boussiba S (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J Phycol 46:763–772

    Article  CAS  Google Scholar 

  • Sontrop J, Campbell MK (2006) ω-3 polyunsaturated fatty acids and depression: a review of the evidence and a methodological critique. Prev Med 42:4–13

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231

    Article  CAS  PubMed  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A (1999) Production of EPA by Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 41–56

    Google Scholar 

  • Sukenik A, Takahashi H, Mokady S (1994) Dietary lipids from marine unicellular algae enhance the amount of liver and blood omega-3 fatty acids in rats. Ann Nutr Metab 38:85–96

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A, Beardall J, Kromkamp JC, Kopeck J, Masojídek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308

    Article  Google Scholar 

  • Tan CK, Johns MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic acid production. J App Phycol 8:59–64

    Article  CAS  Google Scholar 

  • Thies F, Garry JMC, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, Grimble RF (2003) Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:477–485

    Article  CAS  PubMed  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    Article  PubMed  Google Scholar 

  • Tirichine L, Bowler C (2011) Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J 66:45–57

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Identification of a very long chain polyunsaturated fatty acid D4-desaturase from the microalga Pavlova lutheri. FEBS Lett 553:440–444

    Article  CAS  Google Scholar 

  • Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA, Graham IA (2005) Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 272:3401–3412

    Article  CAS  PubMed  Google Scholar 

  • Tredici M (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Vazhappilly R, Chen F (1998) Heterotrophic production of potential omega-3 polyunsaturated fatty acids by microalgae and algaelike microorganisms. Bot Mar 41:553–558

    Article  CAS  Google Scholar 

  • Venegas-Calerón M, Sayanova O, Napier J (2010) An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49:108–119

    Article  CAS  PubMed  Google Scholar 

  • Volkman JK, Dunstan GA, Jefrey SW, Kearney PS (1991) Fatty acids from microalgae of the genus Pavlova. Phytochemistry 30:1855–1859

    Article  CAS  Google Scholar 

  • Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) Biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78

    Article  CAS  Google Scholar 

  • Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M (2010) Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem 48:407–416

    Article  CAS  PubMed  Google Scholar 

  • Wallis JG, Browse J (1999) The D8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys 365:307–316

    Article  CAS  PubMed  Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis. What will they think of next? Trends Biochem Sci 27:467–473

    Article  CAS  PubMed  Google Scholar 

  • Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Zhou XR, Robert SS, Petrie JR, Frampton DM, Mansour MP, Blackburn SI, Nichols PD, Green AG, Singh SP (2007) Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68:785–796

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Xue Z, Yadav N, Damude H, Pollak DW, Ruppert R, Seip J, Hollerbach Macool D, Zhang H, Bledsoe S, Short D, Tyreus B, Kinney A, Picataggio S (2010) Metabolic engineering of an oleaginous yeast for the production of omega-3 fatty acids. In: Cohen Z, Ratledge C (eds) Single cell oils: microbial and algal oils. AOCS, Urbana, pp 51–73

    Chapter  Google Scholar 

  • Zou N, Zhang C, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol 35:127–133

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues from the Microalgal Biotechnology Laboratory for fruitful discussions and acknowledge Camille Vainstein for professional English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Khozin-Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khozin-Goldberg, I., Iskandarov, U. & Cohen, Z. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91, 905–915 (2011). https://doi.org/10.1007/s00253-011-3441-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3441-x

Keywords

Navigation