Skip to main content
Log in

Cloning and Characterization of the ∆6 Polyunsaturated Fatty Acid Elongase from the Green Microalga Parietochloris incisa

  • Original Article
  • Published:
Lipids

Abstract

The very-long-chain polyunsaturated fatty acid (VLC-PUFA), arachidonic acid (ARA, 20:4ω-6) is a component of neuron tissues such as brain and retina cells and a primary substrate for the biosynthesis of biologically active eicosanoids. The green freshwater microalga Parietochloris incisa (Trebouxiophyceae) has been shown to accumulate an extraordinary high content of ARA-rich triacylglycerols. It was thus interesting to characterize the genes involved in lipid biosynthesis in this alga. We report here the identification of a cDNA encoding for a P. incisa PUFA elongase (PiELO1) and demonstrate that the expression of PiELO1 in yeast Saccharomyces cereviseae confers its elongase activity on C18 ∆6 PUFA. Phylogenetic analysis indicated that PiELO1 is highly similar to functionally characterized ∆6 PUFA elongase genes from other green algae and lower plants. Quantitative real-time PCR expression studies showed that PiELO1 is upregulated under nitrogen starvation, the condition triggering and enhancing storage oil and ARA accumulation in P. incisa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

DGLA:

Dihomo-γ-linolenic acid

DHA:

Docosahexaenoic acid

GLA:

γ-Linolenic acid

EPA:

Eicosapentaenoic acid

STA:

Stearidonic acid

VLC-PUFA:

Very-long-chain polyunsaturated fatty acid

References

  1. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  PubMed  CAS  Google Scholar 

  2. Hansen J, Schade D, Harris C, Merkel K, Adamkin D, Hall R, Lim M, Moya F, Stevens D, Twist P (1997) Docosahexaenoic acid plus arachidonic acid enhance preterm infant growth. Prostaglandins Leukot Essent Fatty Acids 57:196

    Google Scholar 

  3. Crawford MA, Golfetto I, Ghebremeskel K, Min Y, Moodley T, Poston L, Phylactos A, Cunnane S, Schmidt W (2003) The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants. Lipids 38:303–315

    Article  PubMed  CAS  Google Scholar 

  4. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  PubMed  CAS  Google Scholar 

  5. Arao T, Sakaki T, Yamada M (1994) Biosynthesis of polyunsaturated lipids in the diatom, Phaeodactylum tricornutum. Phytochemistry 36:629–635

    Article  CAS  Google Scholar 

  6. Cohen Z, Norman HA, Heimer YM (1995) Microalgae as a source of ω3 fatty acids. In: Simopoulos AP (ed) Plants in human nutrition, vol. 77. World Rev Nutr Diet. Karger, Basel, pp 1–31

  7. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  PubMed  CAS  Google Scholar 

  8. Cohen Z, Khozin-Goldberg I (2005) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. J Am Oil Chem Soc, Champaign, pp 53–72

    Google Scholar 

  9. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  CAS  Google Scholar 

  10. Robert SS, Singh SP, Zhou X, Petrie JR, Blackburn SI, Mansour PM, Nichols PD, Liu Q, Green AG (2005) Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol 32:473–479

    Article  CAS  Google Scholar 

  11. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  12. Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J Phycol 38:991–994

    Article  CAS  Google Scholar 

  13. Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z (2002) Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chlorophyceae): radiolabeling studies. Lipids 37:209–216

    Article  PubMed  CAS  Google Scholar 

  14. Khozin-Goldberg I, Adlerstein D, Bigogno C, Heimer YM, Cohen Z (1997) Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. Plant Physiol 114:223–230

    Google Scholar 

  15. Qi B, Beaudoin F, Fraser T, Stobart AK, Napier JA, Lazarus CM (2002) Identification of a cDNA encoding a novel C18-Δ9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett 510:159–165

    Article  PubMed  CAS  Google Scholar 

  16. Nichols BW, Appleby RS (1969) The distribution of arachidonic acid in algae. Phytochemistry 8:1907–1915

    Article  CAS  Google Scholar 

  17. Meyer A, Cirpus P, Ott C, Schlecker R, Zahringer U, Heinz E (2003) Biosynthesis of Docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Δ4-fatty acyl group desaturase. Biochemistry 42:9779–9788

    Article  PubMed  CAS  Google Scholar 

  18. Lassner MW, Lardizaba K, Metz JG (1996) A jojoba [beta]-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    Article  PubMed  CAS  Google Scholar 

  19. Beaudoin F, Michaelson LV, Hey SJ, Lewis MJ, Shewry PR, Sayanova O, Napier JA (2000) Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc Natl Acad Sci USA 97:6421–6426

    Article  PubMed  CAS  Google Scholar 

  20. Leonard AE, Bobik EG, Dorado J, Kroeger PE, Chuang LT, Thurmond JM, Parker-Barnes JM, Das T, Huang YS, Mukerji P (2000) Cloning of a human cDNA encoding a novel enzyme involved in the elongation of long-chain polyunsaturated fatty acids. Biochem J 3:765–770

    Article  Google Scholar 

  21. Agaba MK, Tocher DR, Zheng X, Dickson CA, Dick JR, Teale AJ (2005) Cloning and functional characterization of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Comp Biochem Physiol 42:342–352

    Google Scholar 

  22. Domergue F, Lerchl J, Zähringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  PubMed  CAS  Google Scholar 

  23. Kaewsuwan S, Cahoon EB, Perroud PF, Wiwat C, Panvisavas N, Quatrano RS, Cove DJ, Bunyapraphatsara N (2006) Identification and functional characterization of the moss Physcomitrella patens Δ5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J Biol Chem 281:21988–21997

    Article  PubMed  CAS  Google Scholar 

  24. Kajikawa M, Yamato KT, Kohzu Y, Nojiri M, Sakuradani E, Shimizu S, Saka Y, Fukuzawa H, Ohyama K (2004) Isolation and characterization of Δ6-desaturase, an ELO-like enzyme and Δ5-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Mol Biol 54:335–352

    Article  PubMed  CAS  Google Scholar 

  25. Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT, Huang YS, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA 97:8284–8289

    Article  PubMed  CAS  Google Scholar 

  26. Wynn JP, Ratledge C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiology 146:2325–2331

    PubMed  CAS  Google Scholar 

  27. Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005) Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids 40:25–30

    Article  PubMed  CAS  Google Scholar 

  28. Meyer A, Kirsch H, Domergue F, Abbadi A, Sperling P, Bauer J, Cirpus P, Zank TK, Moreau H, Roscoe TJ, Zähringer U, Heinz E (2004) Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 45:1899–1909

    Article  PubMed  CAS  Google Scholar 

  29. Agaba M, Tocher DR, Dickson CA, Dick JR, Teale AJ (2004) Zebra fish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Mar Biotechnol 6:251–261

    Article  PubMed  CAS  Google Scholar 

  30. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    PubMed  CAS  Google Scholar 

  31. Bekesiova I, Nap JP, Mlynarova L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep 17:269–277

    Article  CAS  Google Scholar 

  32. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  33. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, Albright LM, Cohen DM, Varki A (1995) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  35. Cserzö M, Wallin E, Simon I, Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676

    Article  PubMed  Google Scholar 

  36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  37. Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162

    PubMed  CAS  Google Scholar 

  38. Qi B, Fraser T, Bleakley CL, Shaw EM, Stobart AK, Lazarus CM (2003) The variant ‘his-box’ of the C18-Δ9-PUFA-specific elongase IgASE1 from Isochrysis galbana is essential for optimum enzyme activity. FEBS Lett 547:137–139

    Article  PubMed  CAS  Google Scholar 

  39. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotech 23:1013–1017

    Article  CAS  Google Scholar 

  40. Zank TK, Zähringer U, Beckmann PG, Boland W, Holtort H, Reski J, Lerchl J, Heinz E (2002) Cloning and functional characterization of an enzyme involved in the elongation of a Δ6-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J 31:255–268

    Article  PubMed  CAS  Google Scholar 

  41. Kajikawa M, Yamato K, Sakai Y, Fukuzawa H, Ohyama K, Kohchi T (2006) Isolation and functional characterization of fatty acid Δ5-elongase gene from the liverwort Marchantia polymorpha L. FEBS Lett 580:149–154

    Article  PubMed  CAS  Google Scholar 

  42. Pereira SL, Leonard AE, Huang YS, Chuang LT, Mukerji P (2004) Identification of two novel microalgal enzymes involved in the conversion of the omega 3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J 384:357–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Israeli ministry of science, culture and sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Khozin-Goldberg.

About this article

Cite this article

Iskandarov, U., Khozin-Goldberg, I., Ofir, R. et al. Cloning and Characterization of the ∆6 Polyunsaturated Fatty Acid Elongase from the Green Microalga Parietochloris incisa . Lipids 44, 545–554 (2009). https://doi.org/10.1007/s11745-009-3301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3301-y

Keywords

Navigation