Skip to main content

Microalgae as a Source for VLC-PUFA Production

  • Chapter
  • First Online:
Lipids in Plant and Algae Development

Part of the book series: Subcellular Biochemistry ((SCBI,volume 86))

Abstract

Microalgae present a huge and still insufficiently tapped resource of very long-chain omega-3 and omega-6 polyunsaturated fatty acids (VLC-PUFA) for human nutrition and medicinal applications. This chapter describes the diversity of unicellular eukaryotic microalgae in respect to VLC-PUFA biosynthesis. Then, we outline the major biosynthetic pathways mediating the formation of VLC-PUFA by sequential desaturation and elongation of C18-PUFA acyl groups. We address the aspects of spatial localization of those pathways and elaborate on the role for VLC-PUFA in microalgal cells. Recent progress in microalgal genetic transformation and molecular engineering has opened the way to increased production efficiencies for VLC-PUFA. The perspectives of photobiotechnology and metabolic engineering of microalgae for altered or enhanced VLC-PUFA production are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abida H, Dolch LJ, Meï C, Villanova V, Conte M et al (2015) Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol 167:118–136. doi:10.1104/pp.114.252395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Ghosh S, Didi-Cohen S, Markovitch D et al (2015) A novel source of dihomo-γ-linolenic acid: possibilities and limitations of DGLA production in the high-density cultures of the Δ5 desaturase-mutant microalga Lobosphaera incisa. Eur J Lipid Sci Technol.117: 760–766 doi:10.1002/ejlt.201400430

    Google Scholar 

  • Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792

    Article  CAS  PubMed  Google Scholar 

  • Adlerstein D, Bigogno C, Khozin I, Cohen Z (1997) The effect of growth temperature and culture density on the molecular species composition of the galactolipids in the red microalga Porphyridium cruentum (Rhodophyta). J Phycol 33:975–979. doi:10.1111/j.0022-3646.1997.00975.x

    Article  CAS  Google Scholar 

  • Ahman K, Heilmann M, Feussner I (2011) Identification of a Δ4-desaturase from microalga Ostreococcus lucimarinus. Eur J Lipid Sci Technol 113:832–840

    Article  CAS  Google Scholar 

  • Alonso DL, Belarbi EH, Rodriguez-Ruiz J et al (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1483. doi:10.1016/S0031-9422(97)01080-7

    Article  Google Scholar 

  • An M, Mou S, Zhang X et al (2013) Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol 134:151–157

    Article  CAS  PubMed  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  CAS  PubMed  Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Araki S, Eichenberger W, Sakurai T, Sato N (1991) Distribution of diacylglyceryl-hydroxymethyltrimethyl-β-alanine (DGTA) and phosphatidylcholine in brown algae. Plant Cell Physiol 32:623–628

    CAS  Google Scholar 

  • Arao T, Sakaki T, Yamada M (1994) Biosynthesis of polyunsaturated lipids in the diatom, Phaeodactylum tricornutum. Phytochemistry 36:629–635

    Article  CAS  Google Scholar 

  • Archibald J (2005) Jumping genes and shrinking genomes-probing the evolution of eukaryotic photosynthesis using genomics. IUBMB Life 57:539–547

    Article  CAS  PubMed  Google Scholar 

  • Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    Article  CAS  Google Scholar 

  • Bates PD, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol 16:358–364

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future. Aquaculture 218:491–499

    Article  CAS  Google Scholar 

  • Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91

    Article  CAS  PubMed  Google Scholar 

  • Betancor MB, Sprague M, Usher S et al (2015) A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci Rep 5:8104. doi:10.1038/srep08104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Price DC, Chan CX et al (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941. doi:10.1038/ncomms2931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z (2002a) Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chloropyceae): radiolabeling studies. Lipids 37:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S et al (2002b) Lipid and fatty acid composition of the green alga Parietochloris incisa. Phytochemistry 60:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Cohen Z (2002c) Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry 60:135–143

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39. doi:10.1186/gb-2012-13-5-r39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowitzka MA (1988) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Boyle NR, Page MD, Liu B et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825. doi:10.1074/jbc.M111.334052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozarth A, Maier UG, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82:195–201. doi:10.1007/s00253-008-1804-1808

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6 suppl):1505S–1519S

    Google Scholar 

  • Calder PC (2013) n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc 72:326–336. doi:10.1007/s11745-003-1068-y

    Article  CAS  PubMed  Google Scholar 

  • Cermeño P, Falkowski PG (2009) Controls on diatom biogeography in the ocean. Science 325:1539–1541. doi:10.1126/science.1174159

    Article  PubMed  CAS  Google Scholar 

  • Chan CX, Bhattacharya D, Reyes-Prieto A (2012) Endosymbiotic and horizontal gene transfer in microbial eukaryotes: impacts on cell evolution and the tree of life. Mob Genet Elem 2:101–105

    Article  Google Scholar 

  • Cohen Z (1999) Production of polyunsaturated fatty acids by the microalga Porphyridium cruentum. In: Cohen Z (ed) Production of chemicals by microalgae. Taylor and Francis, London, pp 1–24

    Google Scholar 

  • Cohen Z, Khozin-Goldberg I (2010) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils, 2nd edn. American Oil Chemists’ Society, Champaign, pp 201–224

    Chapter  Google Scholar 

  • Cohen Z, Khozin-Goldberg I, Adlerstein D et al (2000) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743

    Article  CAS  PubMed  Google Scholar 

  • Collins ML, Lynch B, Barfield W, Bull A, Ryan AS, Astwood JD (2014) Genetic and acute toxicological evaluation of an algal oil containing eicosapentaenoic acid (EPA) and palmitoleic acid. Food Chem Toxicol 72:162–168. doi:10.1016/j.fct.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  • Crawford MA, Broadhurst CL (2012) The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability. Nutr Health 21:17–39. doi:10.1177/0260106012437550

    Article  PubMed  CAS  Google Scholar 

  • Dangi B, Obeng M, Nauroth JM et al (2009) Biogenic synthesis, purification, and chemical characterization of anti-inflammatory resolvins derived from docosapentaenoic acid (DPA n-6). J Biol Chem 284:14744–14759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β -carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35:1–51

    Article  CAS  PubMed  Google Scholar 

  • Djouani-Tahri EB, Sanchez F, Lozano J-C, Bouget F-Y (2011) A phosphate-regulated promoter for fine-tuned and reversible overexpression in Ostreococcus: application to circadian clock functional analysis. PLoS One 6(12):e28471. doi:10.1371/journal.pone.0028471

    Article  CAS  PubMed Central  Google Scholar 

  • Dodson VJ, Mouget JL, Dahmen JL, Leblond JD (2014) The long and short of it: temperature-dependent modifications of fatty acid chain length and unsaturation in the galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum. Hydrobiologia 727:95–107. doi:10.1007/s10750-013-1790-4

    Article  CAS  Google Scholar 

  • Dolch L-J, Maréchal E (2015) Inventory of fatty acid desaturases in the pennate diatom Phaeodactylum tricornutum. Mar Drugs. 13(3):1317–39. doi:10.3390/md13031317

    Google Scholar 

  • Domergue F, Lerchl J, Zahringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  CAS  PubMed  Google Scholar 

  • Domergue F, Abbadi A, Ott C et al (2003a) Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J Biol Chem 278:35115–35126

    Article  CAS  PubMed  Google Scholar 

  • Domergue F, Spiekermann P, Lerchl J et al (2003b) New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Delta 12-fatty acid desaturases. Plant Physiol 131:1648–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domergue F, Abbadi A, Zähringer U et al (2005) In vivo characterization of the first acyl-CoA Δ6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez T, Hernandez ML, Pennycooke JC et al (2010) Increasing omega-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dörmann P (2005) Membrane lipids. In: Murphy D (ed) Plant lipids. Biology, utilization and manipulation. Blackwell Publishing, CRC Press, Oxford, pp 123–160

    Google Scholar 

  • Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161:115–134

    Article  CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM et al (1994) Essential polyunsaturated fatty-acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161

    Article  CAS  Google Scholar 

  • Dunstan GA, Brown MR, Volkman JK (2005) Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557–2570

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger W (1993) Betaine lipids in lower plants: distribution of DGTS, DGTA and phospholipids, and the intracellular localization and site of biosynthesis of DGTS. Plant Physiol Biochem 31:213–221

    CAS  Google Scholar 

  • Eichenberger W, Gribi C (1997) Lipids of Pavlova lutheri (Haptophyceae): cellular site and metabolic role of DGCC. Phytochemistry 45:1561–1567

    Article  CAS  Google Scholar 

  • Fabris M, Matthijs M, Rombauts S et al (2012) The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. Plant J 70:1004–1014

    Article  CAS  PubMed  Google Scholar 

  • Fawley KP, Eliáš M, Fawley MW (2014) The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol 26:1773–1782. doi:10.1007/s10811-013-0216-z

    Article  CAS  Google Scholar 

  • Fontana A, d’Ippolito G, Cutignano A et al (2007) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. Chembiochem 8:1810–1818

    Article  CAS  PubMed  Google Scholar 

  • Fraser TC, Qi B, Elhussein S, Chatrattanakunchai S, Stobart AK, Lazarus CM (2004) Expression of the Isochrysis C18-delta9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles. Plant Physiol 135:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Ajjawi I, Manoli A et al (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60:832–839

    Article  CAS  PubMed  Google Scholar 

  • Gil A, Serra-Majem L, Calder PC et al (2012) Systematic reviews of the role of omega-3 fatty acids in the prevention and treatment of disease. Br J Nutr 107:S1–S2

    Article  CAS  PubMed  Google Scholar 

  • Giroud C, Eichenberger W (1988) Fattyacids of Chlamydomonas reinhardtii: structure, positional distribution and biosynthesis. Biol Chem 369:18–19

    Google Scholar 

  • Giroud C, Eichenberger W (1989) Lipids of Chlamydomonas-reinhardtii – incorporation of 14C-acetate, 14C-palmitate and 14C-oleate into different lipids and evidence for lipid-linked desaturation of fattyacids. Plant Cell Physiol 30:121–128

    CAS  Google Scholar 

  • Gombos Z, Kanervo E, Tsvetkova N et al (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115:551–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guihéneuf F, Stengel DB (2013) LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar Drugs 11:4246–4266. doi:10.3390/md11114246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guihéneuf F, Fouqueray M, Mimouni V et al (2010) Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol 22:629–638

    Article  CAS  Google Scholar 

  • Haimeur A, Ulmann L, Mimouni V et al (2012) The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids Health Dis 11:147. doi:10.1186/1476-511X-11-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9. http://dx.doi.org/10.1016/j.ymben.2013.12.003

  • Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 53–64

    Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  CAS  PubMed  Google Scholar 

  • Heinz E (1993) Biosynthesis of polyunsaturated fatty acids. In: Moore TS (ed) Lipid metabolism in plants. CRC Press, Boca Raton, pp 34–89

    Google Scholar 

  • Henderson RJ, Mackinlay EE (1992) Radiolabeling studies of lipids in the marine cryptomonad Chroomonas salina in relation to fatty acid desaturation. Plant Cell Physiol 33:395–406

    CAS  Google Scholar 

  • Hoffmann M, Wagner M, Abbadi A et al (2008) Metabolic engineering of omega3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362. doi:10.1074/jbc.M802377200

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 4:327. doi:10.3389/fpls.2013.00327

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Suzuki I, Szalontai B et al (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278:12191–12198. doi:10.1074/jbc.M212204200

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Ofir R, Cohen Z (2009) Cloning and characterization of the Δ6 polyunsaturated fatty acid elongase from the green microalga Parietochloris incisa. Lipids 44:545–554. doi:10.1007/s11745-009-3301-y

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Cohen Z (2010) Identification and characterization of Δ12, Δ6, and Δ5 desaturases from the green microalga Parietochloris incisa. Lipids 45:519–530. doi:10.1007/s11745-010-3421-4

    Article  CAS  PubMed  Google Scholar 

  • Iskandarov U, Khozin-Goldberg I, Cohen Z (2011) Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I. Identification of mutation site and expression of VLC-PUFA biosynthesis genes. Appl Microbiol Biotechnol 90:249–256. doi:10.1007/s00253-010-3005-5

    Article  CAS  PubMed  Google Scholar 

  • Itoh R, Toda K, Takahashi H, Takano H, Kuroiwa T (1998) Delta-9 fatty acid desaturase gene containing a carboxyl-terminal cytochrome b5 domain from the red alga Cyanidioschyzon merolae. Curr Genet 33:165–170

    Article  CAS  PubMed  Google Scholar 

  • Janssen CI, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17. doi:10.1016/j.plipres.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Phycol 40:651–654

    Article  CAS  Google Scholar 

  • Jinkerson RE, Radakovits R, Posewitz MC (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered 4:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Kajikawa M, Yamato KT, Kohzu Y et al (2006) A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by omega13 desaturation in methylotrophic yeast and tobacco. Plant Cell Physiol 47:64–73

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Sakai S, Adachi K et al (1996) Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–1345

    Article  CAS  Google Scholar 

  • Kaye Y, Grundman O, Zorin B et al (2015) Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: I. Overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Res 11:387–398

    Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  PubMed  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748. doi:10.1098/rstb.2009.0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M, McAvoy R, Peters J et al (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta 223:1090–1100

    Article  CAS  PubMed  Google Scholar 

  • Khozin I, Adlerstein D, Bigongo C et al (1997) Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. II. Studies with radiolabeled precursors. Plant Physiol 114:223–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khozin-Goldberg I, Yu HZ, Adlerstein D, Didi-Cohen S, Heimer YM, Cohen Z (2000) Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids. Lipids 35:881–889

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002a) Nitrogen starvation induced accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa. J Phycol 38:991–994

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Didi-Cohen S, Shayakhmetova I, Cohen Z (2002b) Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae). J Phycol 38:745–756

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Shrestha P, Cohen Z (2005) Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochim Biophys Acta 1738:63–71

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91:905–915

    Article  CAS  PubMed  Google Scholar 

  • Kotajima T, Shiraiwa Y, Suzuki I (2014) Functional screening of a novel Δ15 fatty acid desaturase from the coccolithophorid Emiliania huxleyi. Biochim Biophys Acta 1841:1451–1458

    Article  CAS  Google Scholar 

  • Koven W, Barr Y, Lutzky S et al (2001) The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193:107–122

    Article  CAS  Google Scholar 

  • Koven W, van Anholt R, Lutzky S et al (2003) The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling or daily salinity change. Aquaculture 228:307–320

    Article  CAS  Google Scholar 

  • Kroth P (2007) Molecular biology and the biotechnological potential of diatoms. Springer, Berlin

    Book  Google Scholar 

  • Kroth PG, Chiovitti A, Gruber A et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kyle DJ (1997) Production and use of a single cell oil highly enriched in arachidonic acid. Lipid Technol 9:116–121

    CAS  Google Scholar 

  • Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124. doi:10.1186/1471-2229-11-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laviano A, Rianda S, Molfino A et al (2013) Omega-3 fatty acids in cancer. Curr Opin Clin Nutr Metab Care 16:156–161. doi:10.1097/MCO.0b013e32835d2d99

    Article  CAS  PubMed  Google Scholar 

  • Le HD, Meisel JA, de Meijer VE et al (2009) The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids 81:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeau T, Robert JM (2003) Diatom cultivation and biotechnologically relevant products. Part I: cultivation at various scales. Appl Microbiol Biotechnol 60:612–623

    Article  CAS  PubMed  Google Scholar 

  • Leblond JD, Evens TJ, Chapman PJ (2003) The biochemistry of dinoflagellate lipids, with particular reference to the fatty acid and sterol composition of a Karenia brevis bloom. Phycologia 42:324–331

    Article  Google Scholar 

  • Leblond JD, Dahmen JL, Seipelt RL, Elrod-Erickson MJ, Kincaid R, Howard JC, Evens TJ, Chapman PJ (2005) Lipid composition of chlorarachniophytes (Chlorarachniophyceae) from the genera Bigelowiella, Gymnochlora and Lotharella. J Phycol 41:311–321

    Article  CAS  Google Scholar 

  • Leblond JD, Lasiter AD (2009) Mono- and digalactosyldiacylglycerol composition of dinoflagellates. II. Lepidodinium chlorophorum, Karenia brevis, and Kryptoperidinium foliaceum, three dinoflagellates with aberrant plastids. Eur J Phycol 44:199–205

    Article  CAS  Google Scholar 

  • Leblond JD, Dahmen JL, Evens TJ (2010a) Mono- and digalactosyldiacylglycerol composition of dinoflagellates. IV. Temperature-induced modulation of fatty acid regiochemistry as observed by electrospray ionization/mass spectrometry. Eur J Phycol 45:13–18

    Article  CAS  Google Scholar 

  • Leblond JD, Timofte HI, Roche SA, Porter NM (2010b) Mono and digalactosyldiacylglycerol composition of glaucocystophytes (Glaucophyta): a modern interpretation using positive ion electrospray ionization/mass spectrometry/mass spectrometry. Phycol Res 58:222–229

    Google Scholar 

  • Leliaert F, Smith DR, Moreau H et al (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Lemieux C, Otis C, Turmel M (2014) Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genomics 15:857. doi:10.1186/1471-2164-15-857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leu S, Boussiba S (2014) Advances in the Production of High-Value Products by Microalgae. Ind Biotechnol (New Rochelle N Y) 10(3):169–183. doi:10.1089/ind.2013.0039

    CAS  Google Scholar 

  • Li J, Han D, Wang D et al (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26:1645–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Maeda Y, Sunaga Y et al (2013) Biosynthesis of polyunsaturated fatty acids in the oleaginous marine diatom Fistulifera sp. strain JPCC DA0580. Mar Drugs 11(12):5008–5023. doi:10.3390/md11125008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309

    Article  CAS  PubMed  Google Scholar 

  • López Alonso D, Garcıá-Maroto F, Rodriguez-Ruiz J et al (2003) Evolution of the membrane-bound fatty acid desaturases. Biochem Syst Ecol 31:1111–1124

    Article  CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116:489–509

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chi X, Yang Q, Li Z et al (2009) Molecular cloning and stress-dependent expression of a gene encoding Δ12-fatty acid desaturase in the antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13:875–884

    Article  CAS  PubMed  Google Scholar 

  • Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology (Basel) 3:56–80. doi:10.3390/biology3010056

    Google Scholar 

  • Makewicz A, Gribi C, Eichenberger W (1997) Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [l-14C]oleate and the role of TAG and MGDG in lipid metabolism. Plant Cell Physiol 38:952–960

    Article  CAS  Google Scholar 

  • Mann DG, Vanormelingen P (2013) An inordinate fondness? The number, distributions, and origins of diatom species. J Eukaryot Microbiol 60:414–420. doi:10.1111/jeu.12047

    Article  PubMed  Google Scholar 

  • Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol 21:633–657

    Article  CAS  PubMed  Google Scholar 

  • McLaren JE, Michael DR, Guschina IA et al (2011) Eicosapentaenoic acid and docosahexaenoic acid regulate modified LDL uptake and macropinocytosis in human macrophages. Lipids 46:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Meesapyodsuk D, Qiu X (2012) The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 47:227–237

    Article  CAS  PubMed  Google Scholar 

  • Metz JG, Roessler P, Facciotti D et al (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Cirpus P, Ott C et al (2003) Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Δ4-fatty acyl group desaturase. Biochemistry 42:9779–9788

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Kirsch H, Domergue F et al (2004) Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 45:1899–1909

    Article  CAS  PubMed  Google Scholar 

  • Mironov KS, Maksimov EG, Maksimov GV, Los DA (2012) Feedback between fluidity of membranes and transcription of the desB gene for the ω3-desaturase in the cyanobacterium Synechocystis. Mol Biol 46:134–141. doi:10.1134/S002689331201013X

    Article  CAS  Google Scholar 

  • Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions—II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG et al (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726. http://dx.doi.org/10.1126/science.1172983

    Google Scholar 

  • Muto M, Kubota C, Tanaka M et al (2013) Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA synthesis, isolated from the oleaginous diatom Fistulifera. PLoS One 8(9):e73507. doi:10.1371/journal.pone.0073507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Archibald JM (2012) Evolving a photosynthetic organelle. BMC Biol 10:35. doi:10.1186/1741-7007-10-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napier JA, Sayanova O, Sperling P, Heinz E (1999) A growing family of cytochrome b5 fusion desaturases. Trends Plant Sci 4:2–5

    Article  Google Scholar 

  • Napier JA, Michaelson LV, Sayanova O (2003) The role of cytochrome b5 fusion desaturases in the synthesis of polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 68:135–143

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Cuiné S, Beyly-Adriano A et al (2013) The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase which localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol 163:914–928. doi:10.1104/pp.113.223941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke EJ, Kuballa P, Xavier R, Ruvkun G (2013) ω-6 polyunsaturated fatty acids extend life span through the activation. Genes Dev 27:429–440. doi:10.1101/gad.205294.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orcutt DM, Patterson GW (1975) Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp Biochem Physiol B 50:579–583

    CAS  PubMed  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z et al (2011) The effect of light, salinity and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Pal D, Khozin-Goldberg I, Didi-Cohen S et al (2013) Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift. Appl Microbiol Biotechnol 97:8291–8306

    Article  CAS  PubMed  Google Scholar 

  • Peled E, Leu S, Zarka A et al (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861. doi:10.1007/s11745-011-3579-4

    Article  CAS  PubMed  Google Scholar 

  • Peled E, Pick U, Zarka S, Shimoni E, Leu S, Boussiba S (2012) Light-induced oil globule migration in Haematococcus pluvialis (Chlorophyceae). J Phycol 48:1209–1219

    Article  PubMed  Google Scholar 

  • Pereira SL, Huang Y-S, Bobik EG et al (2004) A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J 378:665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie JR, Singh SP (2011) Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants. AoB Plants 2011:plr011. doi:10.1093/aobpla/plr011

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrie J, Mackenzie AM, Shrestha P et al (2010a) Isolation of three novel long-chain polyunsaturated fatty acid detla9-elongases and the transgenic assembly of the entire Pavlova salina docosahexaenoic acid pathway in Nicotiana benthamiana. J Phycol 46:917–925. doi:10.1111/j.1529-8817.2010.00870.x

    Article  CAS  Google Scholar 

  • Petrie JR, Liu Q, Mackenzie AM et al (2010b) Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic VLC-PUFA production. Mar Biotechnol 12:430–438

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Mansour MP et al (2010c) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with omega3-preference from the marine microalga Micromonas pusilla. Metab Eng 12:233–240

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS One 7(11):e49165. doi:10.1371/journal.pone.0049165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroutsos D, Amiar S, Abida H et al (2014) Evolution of galactoglycerolipid biosynthetic pathways – from cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 54:68–85. doi:10.1016/j.plipres.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Beaudoin F, Fraser T, Stobart AK, Napier JA, Lazarus CM (2002) Identification of a cDNA encoding a novel C18-Δ9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett 510:159–165

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Fraser TC, Bleakley CL, Shaw EM, Stobart AK, Lazarus CM (2003) The variant ‘his-box’ of the C18-Delta9-PUFA-specific elongase IgASE1 from Isochrysis galbana is essential for optimum enzyme activity. FEBS Lett 547:137–139.

    Article  CAS  PubMed  Google Scholar 

  • Qiu X (2003) Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukot Essent Fatty Acids 68:181–186

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI et al (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686. doi:10.1038/ncomms1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rangel-Huerta OD, Aguilera CM, Mesa MD, Gil A (2012) Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials. Br J Nutr 107(Suppl 2):S159–S170. doi:10.1017/S0007114512001559

    Article  CAS  PubMed  Google Scholar 

  • Řezanka T, Petránková M, Cepák V, PŘibyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269

    Google Scholar 

  • Rezanka T, Lukavsky J, Nedbalova L et al (2011) Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72:2342–2351

    Article  CAS  PubMed  Google Scholar 

  • Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1(Cr). Eukaryot Cell 4:242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert S, Petrie J, Zhou X-R, Mansour M, Blackburn S, Green A et al (2009) Isolation and characterisation of a Δ5-fatty acid elongase from the marine microalga Pavlova salina. Mar Biotechnol 11:410–418

    Article  CAS  PubMed  Google Scholar 

  • Robinson LE, Mazurak VC (2013) n-3 polyunsaturated fatty acids: relationship to inflammation in healthy adults and adults exhibiting features of metabolic syndrome. Lipids 48:319–332. doi:10.1007/s11745-013-3774-6

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC et al (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez NR, Haslam RP, Usher SL, Napier JA, Sayanova O (2013) Reconstitution of EPA and DHA biosynthesis in Arabidopsis: iterative metabolic engineering for the synthesis of n-3 VLC-PUFAs in transgenic plants. Metab Eng 17:30–41. doi:10.1016/j.ymben.2013.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R et al (2013) Stability of omega-3 LC-PUFA-rich photoautotrophic microalgal oils compared to commercially available omega-3 LC-PUFA oils. J Agric Food Chem 61:10145–10155. doi:10.1021/jf402296s

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot Cell 6:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayanova O, Beaudoin F, Libisch B et al (2001) Mutagenesis and heterologous expression in yeast of a plant Δ6-fatty acid desaturase. J Exp Bot 52:1581–1585

    Article  CAS  PubMed  Google Scholar 

  • Sayanova O, Haslam RP, Calerón MV, López NR, Worthy C, Rooks P et al (2011a) Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry 72(7):594–600. doi:10.1016/j.phytochem.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  • Sayanova O, Ruiz-Lopez N, Haslam RP et al (2011b) The role of Δ6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants. Plant Biotechnol J 10:195–206

    Article  PubMed  CAS  Google Scholar 

  • Schneider JC, Roessler P (1994) Radiolabeling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae), an oleaginous marine alga. J Phycol 30:594–598

    Article  CAS  Google Scholar 

  • Serhan CN, Hong S, Gronert K et al (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196:1025–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Shepherd CJ, Jackson AJ (2013) Global fishmeal and fish-oil supply: inputs, outputs and markets. J Fish Biol 83:1046–1066

    CAS  PubMed  Google Scholar 

  • Shrestha P (2005) Biosynthesis and mobilization of arachidonic-acid-rich triacylglycerols in the green alga Parietochloris incisa. PhD dissertation, Ben-Gurion University of the Negev

    Google Scholar 

  • Simionato D, Block MA, La Rocca N et al (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2008) The importance of the ω-6/ω-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Didi-Cohen S et al (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Solovchenko A, Merzlyak M, Khozin-Goldberg I et al (2010) Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J Phycol 46:763–772

    Article  CAS  Google Scholar 

  • Somerville CR, Browse JA (1996) Dissecting desaturation; plants prove advantageous. Trends Cell Biol 6:148–153

    Article  CAS  PubMed  Google Scholar 

  • Sperling P, Heinz E (2001) Desaturases fused to their electron donor. Eur J Lipid Sci Technol 103:158–180

    Article  CAS  Google Scholar 

  • Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68:73–95

    Article  CAS  PubMed  Google Scholar 

  • Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis sp. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 41–56

    Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty-acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692

    Article  CAS  Google Scholar 

  • Sukenik A, Takahashi H, Mokady S (1994) Dietary lipids from marine unicellular algae enhance the amount of liver and blood omega-3 fatty acids in rats. Ann Nutr Metab 38:85–96

    Article  CAS  PubMed  Google Scholar 

  • Teoh M-L, Phang S-M, Chu W-L (2012) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 1:1–13

    Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2003) Identification of a very long chain polyunsaturated fatty acid Δ4-desaturase from the microalga Pavlova lutheri. FEBS Lett 553:440–444. doi:10.1016/S0014-5793(03)01078-0

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Harvey D, Qing R et al (2004) Identification of a fatty acid Delta11-desaturase from the microalga Thalassiosira pseudonana. FEBS Lett 563:28–34

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Sayanova O, Michaelson LV et al (2005) Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 272:3401–3412

    Article  CAS  PubMed  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR et al (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110:19748–19753. doi:10.1073/pnas.1309299110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaezi R, Napier JA, Sayanova O (2013) Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae. Mar Drugs 11:5116–5129. doi:10.3390/md11125116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieler A, Brubaker SB, Vick B, Benning CA (2012a) Lipid droplet protein of Nannochloropsis with functions partially analogous to plant oleosins. Plant Physiol 158:1562–1569. http://dx.doi.org/10.1104/pp.111.193029

    Google Scholar 

  • Vieler A, Wu G, Tsai CH et al (2012b) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8(11):e1003064. doi:10.1371/journal.pgen.1003064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viso A-C, Marty J-C (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    Article  CAS  Google Scholar 

  • Vogel G, Eichenberger W (1992) Betaine lipids in lower plants. Biosynthesis of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33:427–436

    CAS  Google Scholar 

  • Wallis JG, Browse J (1999) The Δ8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-Carbon polyunsaturated fatty acids. Arch Biochem Biophys 365(2):307–316

    Article  CAS  PubMed  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278. doi:10.1016/S0163-7827(01)00027-3

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lin H, Gu Y (2012) Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis 11:25. doi:10.1186/1476-511X-11-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichard T, Poulet SA, Halsband-Lenk C et al (2005) Survey of the chemical defence potential of diatoms: screening of fifty one species for alpha, beta, gamma, delta-unsaturated aldehydes. J Chem Ecol 31:949–958

    Article  CAS  PubMed  Google Scholar 

  • Winwood RJ (2013) Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL 20(6):D604. http://dx.doi.org/10.1051/ocl/2013030

    Google Scholar 

  • Wolfe GR, Cunningham FX, Durnfordt D et al (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566–568

    Article  CAS  Google Scholar 

  • Xie D, Jackson EN, Zhu Q (2015) Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol 99:1599–1610. doi:10.1007/s00253-014-6318-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z, He H, Hollerbach D et al (2013a) Identification and characterization of new Δ-17 fatty acid desaturases. Appl Microbiol Biotechnol 97:1973–1985. doi:10.1007/s00253-012-4068-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z, Sharpe PL, Hong SP et al (2013b) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740. doi:10.1038/nbt.2622

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Fang S, Zhang HX et al (2012) N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J Nutr Biochem 24:744–753. doi:10.1016/j.jnutbio.2012.03.023

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Wang HS, Yang S et al (2009) Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Biochem 47:1102–1112

    Article  CAS  PubMed  Google Scholar 

  • Zäuner S, Jochum W, Bigorowski T, Benning C (2012) A cytochrome b5-containing plastid-located fatty acid desaturase from Chlamydomonas reinhardtii. Eukaryot Cell 11:856–863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang P, Liu S, Cong B et al (2011) A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Mar Biotechnol 13:393–401

    Article  CAS  PubMed  Google Scholar 

  • Zhou XR, Robert SS, Petrie JR et al (2007) Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68:785–796

    Article  CAS  PubMed  Google Scholar 

  • Zhukova NV, AizdaicheR NA (1995) Fatty-acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356. doi:10.1016/0031-9422(94)00913-E

    Article  CAS  Google Scholar 

  • Zorin B, Grundman O, Khozin-Goldberg I et al (2014) Development of a nuclear transformation system for oleaginous green alga Lobosphaera (Parietochloris) incisa and genetic complementation of a mutant strain, deficient in arachidonic acid biosynthesis. PLoS One 9(8):e105223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Zvi Cohen for his great contribution to the field, constant guidance and support, Dr. Umidjon Iskandarov for reading the manuscript and his valuable suggestions. Financial support from the European Commission’s Seventh Framework Program for Research and Technology Development (FP7), project GIAVAP, Grant No. 266401 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Khozin-Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khozin-Goldberg, I., Leu, S., Boussiba, S. (2016). Microalgae as a Source for VLC-PUFA Production. In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_19

Download citation

Publish with us

Policies and ethics