Skip to main content

Advertisement

Log in

Light requirements in microalgal photobioreactors: an overview of biophotonic aspects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to enhance microalgal growth in photobioreactors (PBRs), light requirement is one of the most important parameters to be addressed; light should indeed be provided at the appropriate intensity, duration, and wavelength. Excessive intensity may lead to photo-oxidation and -inhibition, whereas low light levels will become growth-limiting. The constraint of light saturation may be overcome via either of two approaches: increasing photosynthetic efficiency by genetic engineering, aimed at changing the chlorophyll antenna size; or increasing flux tolerance, via tailoring the photonic spectrum, coupled with its intensity and temporal characteristics. These approaches will allow an increased control over the illumination features, leading to maximization of microalgal biomass and metabolite productivity. This minireview briefly introduces the nature of light, and describes its harvesting and transformation by microalgae, as well as its metabolic effects under excessively low or high supply. Optimization of the photosynthetic efficiency is discussed under the two approaches referred to above; the selection of light sources, coupled with recent improvements in light handling by PBRs, are chronologically reviewed and critically compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson G (2002) Photobioreactor design. ASAE/CSAE North Central Intersectional Meeting Presentation MBSK02-216, Saskatoon, Canada

  • Bayless DJ, Kremer G, Vis M, Stuart B, Shi L, Ono E, Cuello JL (2006) Photosynthetic CO2 mitigation using a novel membrane-based photobioreactor. J Environ Eng Manag 16:209–215

    CAS  Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Clamydomonas reinhardtii. J Biotechnol 142:70–77

    Article  CAS  Google Scholar 

  • Bertling K, Hurse TJ, Kappler U, Rakic AD (2006) Lasers—an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol Bioeng 94:337–345

    Article  CAS  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–218

    Google Scholar 

  • Carvalho AP, Malcata FX (2003) Kinetic modeling of the autotrophic growth of Pavlova lutheri: study of the combined influence of light and temperature. Biotechnol Prog 19:1128–1135

    Article  CAS  Google Scholar 

  • Carvalho AP, Monteiro CM, Malcata FX (2009) Simultaneous effect of irradiation and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol 21:543–552

    Article  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604

    Article  Google Scholar 

  • Chen CY, Lee CM, Chang JS (2006a) Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors. Biochem Eng J 32:33–42

    Article  CAS  Google Scholar 

  • Chen CY, Lee CM, Chang JS (2006b) Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3–5 using optical-fiber-assisted illumination systems. Int J Hydrogen Energy 31:2345–2355

    Article  CAS  Google Scholar 

  • Contreras S, Soto MA, Toha JC (1979) Applied microalgae photosynthesis: discharge mechanisms in highly illuminated cells. Biotechnol Bioeng 21:159–165

    Article  CAS  Google Scholar 

  • Danion A, Disdier J, Guillard C, Abdelmalek F, Renault NJ (2004) Characterization and study of a single TiO2-coated optical fiber reactor. Appl Catal B Environ 52:213–223

    Article  CAS  Google Scholar 

  • Dubinsky Z, Matsukawa R, Karube I (1995) Photobiological aspects of algal mass culture. J Mar Biotechnol 2:61–65

    Google Scholar 

  • Everett K (2002) Patent MX PA04008174 A: LED array for illuminating cell well plates and automated rack system for handling the same

  • Fleck-Schneider P, Lehr F, Posten C (2007) Modelling of growth and product formation of Porphyridium purpureum. J Biotechnol 32:134–141

    Article  Google Scholar 

  • Goldman JC (1980) Physiological aspects in algal mass cultures. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 343–359

    Google Scholar 

  • Gordon JM, Polle JEW (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975

    Article  CAS  Google Scholar 

  • Grima EM, Pérez JAS, Camacho FG, Sánchez JLG, Fernández FGA, Alonso DL (1994) Outdoor cultivation of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. J Biotechnol 37:159–166

    Article  Google Scholar 

  • Grobbelaar JU (2009) Upper limits of photosynthetic productivity and problems of scaling. J Appl Phycol 21:519–522

    Article  Google Scholar 

  • Jesus C, Silva SFO, Castanheira M, González-Aguilar G, Frazão O, Jorge PAS, Baptista JM (2009) Measurement of acetic acid using a fibre Bragg grating interferometer. Meas Sci Technol 20:125201

    Article  Google Scholar 

  • Kim ZH, Kim SH, Lee HS, Lee CG (2006) Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme Microb Technol 39:414–419

    Article  CAS  Google Scholar 

  • Kommareddy A, Anderson G (2002) Photobioreactor design. ASAE Annual International Meeting Presentation MBSK02-216, Saskatoon, Canada

  • Kommareddy A, Anderson G (2003) Study of light as a parameter in the growth of algae in a Photo-Bio-Reactor (PBR). ASAE Annual International Meeting Presentation 034057, Las Vegas, USA

  • Kommareddy A, Anderson G (2004) Study of light requirements of a photobioreactor. North Central ASAE/CSAE Conference Presentation MB04-111, Winnipeg, USA

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  Google Scholar 

  • Lee YK (1990) Genetic and technological improvement with respect to mass cultivation of microalgae. In: Nga BH, Lee YK (eds) Microbiology applications in food biotechnology. Elsevier Applied Science, London, pp 61–73

    Google Scholar 

  • Lee CG, Palsson BØ (1996) Photoacclimation of Chlorella vulgaris to red light from light-emitting diodes leads to autospore release following each cellular division. Biotechnol Prog 12:249–256

    Article  CAS  Google Scholar 

  • Masojidek J, Koblizek M, Torzillo G (2004) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 20–39

    Google Scholar 

  • Matsunaga T, Takeyama H, Suso H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG, Sode K, Nakamura N (1981) Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light diffusing optical fibers. Appl Biochem Biotechnol 28:157–167

    Google Scholar 

  • Mauseth JD (1991) Plant physiology and development. In: Mauseth JD (ed) Botany. Saunders College Publishing, USA, pp 239–271

    Google Scholar 

  • Mitra M, Melis A (2008) Optical properties of microalgae for enhanced biofuels production. Opt Express 16:21807–21820

    Article  CAS  Google Scholar 

  • Molina E, Fernandez F, Acien FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  Google Scholar 

  • Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by fresnel lenses and transmitted through optical fibers. Biotechnol Bioeng Symp 15:331–345

    Google Scholar 

  • Nakajima Y, Tsuzuki M, Ueda R (2001) Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J Appl Phycol 13:95–101

    Article  CAS  Google Scholar 

  • Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184

    Article  CAS  Google Scholar 

  • Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70:289–297

    Article  CAS  Google Scholar 

  • Packer M (2009) Algae capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Pol 37:3428–3437

    Article  Google Scholar 

  • Park KH, Lee CG (2001) Effectiveness of flashing light for increasing photosynthetic efficiency of microalgal cultures over a critical cell density. Biotechnol Bioprocess Eng 6:189–193

    Article  CAS  Google Scholar 

  • Pirt SJ (1982) Microbial photosynthesis in the harnessing of solar-energy. J Chem Technol Biotechnol 32:198–202

    Article  CAS  Google Scholar 

  • Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon-dioxide—design and performance. J Chem Technol Biotechnol 33:35–58

    Article  Google Scholar 

  • Plaza M, Herrero M, Cifuentes A, Ibanez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57:7159–7170

    Article  CAS  Google Scholar 

  • Richmond A, Zou N (1999) Efficient utilization of high photon irradiance for mass production of photoautotrophic microorganisms. J Appl Phycol 11:123–127

    Article  Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    Article  Google Scholar 

  • Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236

    Article  CAS  Google Scholar 

  • Silva SFO, Frazão O, Caldas P, Santos JL, Araújo FM, Ferreira LA (2008) Optical fibre refractometer based on a Fabry-Pérot interferometer. Opt Eng 47:054403

    Article  Google Scholar 

  • Tennessen DJ, Bula RJ, Sharkey TD (1995) Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth Res 44:261–269

    Article  CAS  Google Scholar 

  • Tredici MR (1999) Bioreactors, photo. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 1. Wiley, New York, pp 395–419

    Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba S (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Article  Google Scholar 

  • Wang CY, Fu CC, Liu YC (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25

    Article  Google Scholar 

  • Wu JCS, Lin HM, Lai CL (2005) Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl Catal A Gen 296:194–200

    Article  CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189

    Article  CAS  Google Scholar 

  • Zittelli GC, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for author Carvalho via a postdoctoral fellowship (SFRH/BPD/26424/2006), funded by POCI 2010 (Portugal) with the support of FSE (Social European Found) and under the supervision of author Malcata, is hereby gratefully acknowledged. This work received partial financial support via projects OPTIC-ALGAE (PTDC/BIO/71710/2006) and MICROPHYTE: (PTDC/EBB-EBI/102728/2008), funded also by POCI 2010 with the support of FSE and both under the coordination of author Malcata. The access to electronic databases and literature references made available by CBQF should be formally quoted here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Xavier Malcata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, A.P., Silva, S.O., Baptista, J.M. et al. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89, 1275–1288 (2011). https://doi.org/10.1007/s00253-010-3047-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3047-8

Keywords

Navigation