Skip to main content
Log in

Biotechnology of algal biomass production: a review of systems for outdoor mass culture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae are very efficient solar energy converters and they can produce a great variety of metabolites. Man has always tried to take advantage of these proporties through algal mass culture. Despite the fact that many applications for microalgae have been described in the literature, these micro-organisms are still of minor economic importance. Industrial reactors for algal culture are at present, all designed as open race-ways (shallow open ponds where culture is circulated by a paddle-wheel). Technical and biological limitations of these open systems have given rise to the development of enclosed photoreactors (made of transparent tubes, sleeves or containers and where light source may be natural or artificial). The present review surveys advances in these two technologies for cultivation of microalgae. Starting from published results, the advantages and disadvantages of open systems and closed photobioreactors are discussed. A few open systems are presented for which particularly reliable results are available. Emphasis is then put on closed systems, which have been considered as capital intensive and are justified only when a fine chemical is to be produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DB, Eakin DE (1985) A process for the production of polysaccharides from microalgae. Biotech. Bioengng 15: 533–547.

    Google Scholar 

  • Balloni WG, Florenzano A, Materassi R, Tredici C, Soeder CJ, Wagener K (1983) Mass culture of algae for energy farming in coastal deserts. In Stub A, Chartier P, Schleser G (eds), Energy from Biomass, Second E.C. Conference. Applied Science Publishers, London, 291–295.

    Google Scholar 

  • Becker, EW (1986) Nutritional proporties of microalgae: potentials and constraints. In Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida, 339–420.

    Google Scholar 

  • Becker EW, Venkataraman LV (1982) Biotechnology and Exploitation of Algae — The Indian Approach. Agency for Technical Cooperation, Eschlorm, Germany, 216 pp.

    Google Scholar 

  • Ben Amotz A, Avron M (1989) The biotechnology of mass culturingDunaliella for products of commercial interest. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific and Technical, New York, 91–114.

    Google Scholar 

  • Benemann JR (1989) The future of microalgal biotechnology. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific and Technical, New York, 317–337.

    Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J. appl. Phycol. 4: 233–245.

    Google Scholar 

  • Benemann JR, Tillett DM, Weissman JC (1987) Microalgae biotechnology. Trends in Biotechnol. 5: 47–53.

    Google Scholar 

  • Bonnin G (1992)Spirulina Production Engineering Handbook: a Comprehensive Guide for the Realization and Operation of Small and Large-scaleSpirulina Factories. BECCMA (ed. & Pub.), Nantes, France, 140 pp.

    Google Scholar 

  • Borowitzka LJ (1991) Development of Western Biotechnology's algal β-carotene plant. Bioresource Technol. 38: 251–252.

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1989) Industrial production: methods and economics. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, New York, 294–316.

    Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes. Matching science and economics. J. appl. Phycol. 4: 267–279.

    Google Scholar 

  • Brouers M, Dejong H, Shi DJ, Hall DO (1989) Immobilized cells: an appraisal of the methods and applications of cell immobilization techniques. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, New York, 272–293.

    Google Scholar 

  • Bubrick P (1991) Production of astaxanthin fromHaematococcus. Bioresource Technol. 38: 237–240.

    Google Scholar 

  • Burlew JS (ed.) (1953) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington DC, 357 pp.

    Google Scholar 

  • Calvin M, Taylor SE (1989) Fuels from algae. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, New York, 137–160.

    Google Scholar 

  • Canivez O (1988) Progrès récents de la biotechnologie des algues. Biofutur 65: 56–57.

    Google Scholar 

  • Cannell RJ (1990) Algal biotechnology. Appl. Biochem. Biotechnol. 26: 85–105.

    PubMed  Google Scholar 

  • Cardenas A, Markovits A (1985) Mixing and power characteristics of a mixing board device in shallow ponds. Appl. Phycol. 2: 1–3.

    Google Scholar 

  • Chapman DJ, Gollenbeck KW (1989) An historical perspective of algal biotechnology. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, New York, 1–27.

    Google Scholar 

  • Chaumont D, Ferreira dos Santos P, Sauze L (1991a) Dispositif de nettoyage automatique en continue de la canalisation du réceptour solaire d'un photobioréacteur. French Patent 9,103,781.

  • Chaumont D, Thepenier C, Gudin C (1988) Scaling up a tubular photoreactor for continuous culture ofPorphyridium cruentum — From laboratory to pilot plant. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London, 199–208.

    Google Scholar 

  • Chaumont D, Ferreira dos Santos P, Gudin C, Chaintron G, Assice D (1991b) Dispositif de production intensive et contrôlée de microorganismes photo synthétiques fragiles. French Patent 9,115,735.

  • Ciferri O, Tiboni O, Sanangelantoni AM (1989) The genetic manipulation of cyanobacteria and its potential uses. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, New York, 239–271.

    Google Scholar 

  • Cohen E, Arad (Malis) S (1989) A closed system for outdoor cultivation ofPorphyridium cruentum. Biomass 18: 59–67.

    Google Scholar 

  • Cook PM (1950) Large-scale culture ofChlorella. In Brunel J, Prescott GW (eds), The Culture of Algae. Charles F. Kettering Foundation, Ohio, 53–77.

    Google Scholar 

  • Craig, R, Reichelt BY, Reichelt JL (1988) Genetic engineering of microalgae. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U. P., Cambridge, 415–455.

    Google Scholar 

  • Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a microalgal mollusc feed. Bioresource Technol. 38: 245–250.

    Google Scholar 

  • De la Noüe J, Laliberté G, Proulx D (1992) Algae and waste water. J. appl. Phycol. 4: 247–254.

    Google Scholar 

  • De Pauw N, Persoone G (1988) Microalgae for aquaculture. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 197–221.

    Google Scholar 

  • Dilov KH, Georgiev D, Furnadzhieva S, Benderliev K, Gabev A, Bozhkova M, Pilarski P (1987) Mass cultivation and processing of microalgae in Bulgaria. Fiziologiya Rastenii 34: 1030–1035.

    Google Scholar 

  • Dodd JC (1986) Elements of pond design and construction. In Richmond A (ed.), Handbook of microalgal mass culture. CRC Press, Boca Raton, Florida, 265–283.

    Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In Steward WPD (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford, and University of California Press, 530–559.

    Google Scholar 

  • Edmund T, Lee YK, Bazin MJ (1990) A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures. New Phytol. 116: 331–335.

    Google Scholar 

  • Fallowfield HJ, Martin NJ (1991) Photobioreactors illumination chamber with serpentine fluid pathway. British Patent 2,235,210.

  • Fujita Kogyo KK (1991) Removing carbon dioxide in exhaust gas with algae. Japanese Patent 3,056,121.

  • Glombitza KW, Koch M (1989) Secondary metabolites of pharmaceutical potential. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, New York, 161–238.

    Google Scholar 

  • Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass. In Palz W, Pirrwitz D (eds), Proceedings of the Workshop and E.C. Contractor's Meeting in Capri. D. Reidel Publishing Co., Dordrecht, 184–193.

    Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility: the key problem of microalgae mass production in closed photobioreactors. Bioresource Technol. 38: 145–151.

    Google Scholar 

  • Hall DO (1986) The production of biomass: a challange to our society. In Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida, 1–24.

    Google Scholar 

  • Hanson AM (1967) Microbial production of pigments and vitamins. In Peppler HJ (ed.), Microbial Technology, 222–250.

  • Heussler P, Castillo J, Morino S, Vasquez V (1978) Improvements in pond construction and CO2 supply for the mass production of microalgae. Arch. Hydrobiol. 11: 254.

    Google Scholar 

  • Hoeksema SD (1991) Bioreactor for cultivation of photosynthetic microorganisms. World Patent 9,107,080.

  • James, CM, Al-Khars AM (1987) An intensive continuous culture system using tubular photoreactors for producing microalgae. Aquaculture 87: 381–393.

    Google Scholar 

  • Javanmardian M, Palsson BO (1991) High density photoautotrophic algal cultures: design, construction and operation of a novel photobioreactor system. Biotech. Bioengng 38: 1182–1189.

    Google Scholar 

  • Junter GA, Labbe M, Mignot L, Guerout P, Papore F (1990) Immobilized photosynthetic biophotoreactor. World Patent 9,009,430.

  • Kyle D (1989) Market applications for microalgae. JAOCS, 66, 648–653.

    Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1986) High algal production rates achieved in a shallow outdoor flume. Biotech. Bioengng 28: 191–197.

    Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1988) Mass culture optimization studies with four marine microalgae. Biomass 16: 19–32.

    Google Scholar 

  • Lee YK (1986) Enclosed bioreactors for the mass cultivation of photosynthetic organisms: the future trend. Trends in Biotechnol. 4: 186–189.

    Google Scholar 

  • Lee YK, Hing HK (1989) Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl. Microbiol. Biotechnol. 31: 298–301.

    Google Scholar 

  • Marsot P, Fournier R, Blais C (1981) Culture á dialyse: emploi de fibres creuses dialysantes pour la culture massive de phytoplancton. Can. J. Fish. Aquat. Sci. 38: 905–911.

    Google Scholar 

  • Metting B (1988) Micro-algae in agriculture. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 288–304.

    Google Scholar 

  • Meyer M, Levert JM, Vanthournh M (1990) Light diffuser introducing light to liquid. World Patent 9,015,953.

  • Miyamoto K, Wable O, Benemann JR (1988) Vertical tubular reactor for microalgae cultivation. Biotechnol. Lett. 10: 703–708.

    Google Scholar 

  • Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresnel lenses and transmitted trough optical fibers. Biotech. Bioengng 15: 331–345.

    Google Scholar 

  • Muller-Feuga A, Chaumont D, Gudin C (1992) Dispositif de nettoyage des canalisations d'un photobioréacteur et photobioréacteur muni de cc dispositif. French Patent 9,212,474.

  • Oswald WJ (1969) Current status of algae from wastes. Chem. Eng. Symp. Ser. 65: 87–92.

    Google Scholar 

  • Oswald WJ (1988a) Micro-algae and waste-water treatment. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 305–328.

    Google Scholar 

  • Oswald WJ (1988b) Large-scale algal culture systems (engineering aspects). In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 357–394.

    Google Scholar 

  • Persoone G, Morales J, Verlet H, De Pauw N (1980) Air-lift pumps and the effect of mixing on algal growth. In Shelef G, Soeder CJ (eds), Algol Biomass. Elsevier/North Holland Biomedical Press, Amsterdam, 505–522.

    Google Scholar 

  • Pirt SJ (1983) Maximum photosynthetic efficiency: a problem to be resolved. Biotech. Bioengng 25: 1915–1922.

    Google Scholar 

  • Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol. 33: 35–58.

    Google Scholar 

  • Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christaen D (eds), Algol Biotechnology. Elsevier Applied Science, London, 209–218.

    Google Scholar 

  • Ramos de Ortega A, Roux JC (1986) Production ofChlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10: 141–156.

    Google Scholar 

  • Ratchford IA, Fallowfield HJ (1992) Performance of a flat plate air-lift reactor for the growth of high biomass algal culture. J. appl. Phycol. 4: 1–9.

    Google Scholar 

  • Richmond A (1986) Microalgaculture. Crit. Rev. Microbiol. 4: 369–438.

    Google Scholar 

  • Richmond A (1987) The challenge confronting industrial microalgaculture: high photosynthetic efficiency in largescale reactors. Hydrobiologia 151/152: 117–121.

    Google Scholar 

  • Richmond A (1988)Spirulina. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 85–121.

    Google Scholar 

  • Richmond A (1990) Large-scale microalgal culture and applications. In Round FE, Chapman DJ (eds), Progress in Physiological Research, Vol. 7, Biopress, Bristol, 269–330.

    Google Scholar 

  • Richmond A (1992) Open systems for the mass production of photoautotrophic microalgae outdoors: physiological principles. J. appl. Phycol. 4: 281–286.

    Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation — A general outline. In Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida, 245–264.

    Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgal outdoors. J. appl. Phycol. 5: 327–332.

    Google Scholar 

  • Richmond A, Vonshak A (1991) Preface of the special issue of Bioresource Technol. 38: 83–84.

    Google Scholar 

  • Robinson LF (1987) Improvements relating to biomass production. European Patent 0,239,272.

  • Robinson PK, Mak AL, Trevan MD (1986) Immobilized algae: a review. Process Biochem. 21: 122–127.

    Google Scholar 

  • Roth-Bejerano N, Van Moppes D, Sivan A, Arad (Malis) S (1991) Potential production of protoplasts fromPorphyridium cruentum sp. using an enzymatic extract of its predatorGymnodinium sp. Bioresource Technol. 38: 127–131.

    Google Scholar 

  • Schlipalius L (1991) The extensive commercial cultivation ofDunaliella salina. Bioresource Technol. 38: 241–244.

    Google Scholar 

  • Setlik I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large-scale culture of algae in temperate zones. I-Basic design consideration and scheme of pilot plant. Algol. Stud. (Trebon), 1: 111–164.

    Google Scholar 

  • Soeder C (1986) An historical outline of allied algology. In Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida, 25–41.

    Google Scholar 

  • Sogokenkyusho E (1991) Converting carbon dioxide to oxygen to treat air in closed space. Japanese Patent 3,022,990.

  • Tamiya H, Hase E, Shibata K, Mituya A, Iwamura T, Nihei T, Sasa T (1953) Kinetics of growth ofChlorella, with special reference to its dependence on quantity of available light and on temperature. In Burlew JS (ed.), Algol Culture from Laboratory to Pilot Plant. Carnegie Institution of Washington, Washington DC, 204–232.

    Google Scholar 

  • Tapie P, Bernard A (1988) Microalgae production: technical and economic evaluations. Biotech. Bioengng 32: 873–885.

    Google Scholar 

  • Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzyme Microb. Technol. 7: 474–487.

    Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production ofSpirulina biomass in closed photobioreacteus. Biomass 11: 61–74.

    Google Scholar 

  • Tredici MR, Carlozzi P, Chini Zittelli G, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource Technol. 38: 153–160.

    Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221–231.

    Google Scholar 

  • Trotta P (1981) A simple and inexpensive system for continuous monoxenic mass culture of marine microalgae. Aquaculture 22: 383–387.

    Google Scholar 

  • Vendlova J (1969) Outdoor cultivation in Bulgaria. J. Ann. Microbiol. 19: 1–12.

    Google Scholar 

  • Vonshak A (1988)Porphyridium. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge U.P., Cambridge, 122–134.

    Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotech. Bioengng 31: 336–344.

    Google Scholar 

  • Wohlgeschaffen GD, Subba Rao DV, Mann KH (1992) Vat incubator with immersion core illumination-A new, inexpensive setup for mass phytoplankton culture. J. appl. Phycol. 4: 25–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaumont, D. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5, 593–604 (1993). https://doi.org/10.1007/BF02184638

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02184638

Key words

Navigation