Skip to main content
Log in

Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboulwafa M, Chung YJ, Wai HH, Saier MH Jr (2003) Studies on the Escherichia coli glucose-specific permease, PtsG, with a point mutation in its N-terminal amphipathic leader sequence. Microbiology 149:763–771

    Article  CAS  Google Scholar 

  • Betts WB, Dart RK, Ball AS, Pedlar SL (1991) Biosynthesis and structure of lignocellulose. Springer, Berlin

    Google Scholar 

  • Bohm A, Diez J, Diederichs K, Welte W, Boos W (2002) Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: implications for mal gene regulation, inducer exclusion, and subunit assembly. J Biol Chem 277:3708–3717

    Article  CAS  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  CAS  Google Scholar 

  • Bruckner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148

    Article  CAS  Google Scholar 

  • Cases I, Velazquez F, de Lorenzo V (2007) The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 158:666–670

    Article  CAS  Google Scholar 

  • Chen T, Zhang J, Liang L, Yang R, Lin Z (2009) An in vivo, label-free quick assay for xylose transport in Escherichia coli. Anal Biochem 390:63–67

    Article  CAS  Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York

    Google Scholar 

  • Daruwalla KR, Paxton AT, Henderson PJ (1981) Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J 200:611–627

    CAS  Google Scholar 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  CAS  Google Scholar 

  • Davis EO, Henderson PJ (1987) The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12. J Biol Chem 262:13928–13932

    CAS  Google Scholar 

  • Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93

    Article  CAS  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  CAS  Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. J Ind Microbiol Biotechnol 29:221–227

    Article  CAS  Google Scholar 

  • Fichant G, Basse MJ, Quentin Y (2006) ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes. FEMS Microbiol Lett 256:333–339

    Article  CAS  Google Scholar 

  • Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623

    Article  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  Google Scholar 

  • Gardonyi M, Osterberg M, Rodrigues C, Spencer-Martins I, Hahn-Hägerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3:45–52

    Article  CAS  Google Scholar 

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  CAS  Google Scholar 

  • Goswitz VC, Brooker RJ (1995) Structural features of the uniporter/symporter/antiporter superfamily. Protein Sci 4:534–537

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  CAS  Google Scholar 

  • Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788

    CAS  Google Scholar 

  • Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675–684

    Article  CAS  Google Scholar 

  • Henderson PJ (1990) Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22:525–569

    Article  CAS  Google Scholar 

  • Hernández-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57:186–191

    Article  Google Scholar 

  • Hernández-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Hofer M, Misra PC (1978) Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J 172:15–22

    CAS  Google Scholar 

  • Horazdovsky BF, Hogg RW (1987) High-affinity L-arabinose transport operon. Gene product expression and mRNAs. J Mol Biol 197:27–35

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  CAS  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004b) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  Google Scholar 

  • Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70:6816–6825

    Article  CAS  Google Scholar 

  • Kasahara T, Maeda M, Ishiguro M, Kasahara M (2007) Identification by comprehensive chimeric analysis of a key residue responsible for high affinity glucose transport by yeast HXT2. J Biol Chem 282:13146–13150

    Article  CAS  Google Scholar 

  • Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115–119

    Article  CAS  Google Scholar 

  • Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    Article  CAS  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    Article  CAS  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2009) Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3419–3429

    Article  CAS  Google Scholar 

  • Khankal R, Chin JW, Cirino PC (2008) Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol 134:246–252

    Article  CAS  Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of Industrial Microorganisms. Benjamin Cumings, London, pp 115–146

    Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2001) Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92:502–517

    Article  CAS  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149:1569–1580

    Article  CAS  Google Scholar 

  • Kou SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 103:671–678

    CAS  Google Scholar 

  • Krispin O, Allmansberger R (1998) The Bacillus subtilis AraE protein displays a broad substrate specificity for several different sugars. J Bacteriol 180:3250–3252

    CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  CAS  Google Scholar 

  • Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  CAS  Google Scholar 

  • Lawford HG, Rousseau JD (1991) Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis. Appl Biochem Biotechnol 28–29:221–236

    Article  Google Scholar 

  • Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395:543–549

    Article  CAS  Google Scholar 

  • Leandro MJ, Spencer-Martins I, Gonçalves P (2008) The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646–1655

    Article  CAS  Google Scholar 

  • Leandro MJ, Fonseca C, Goncalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9:511–525

    Article  CAS  Google Scholar 

  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191

    Article  CAS  Google Scholar 

  • Lengeler JW, Jahreis K (2009) Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol 16:65–87

    Article  CAS  Google Scholar 

  • Lengeler JW, Titgemeyer F, Vogler AP, Wohrl BM (1990) Structures and homologies of carbohydrate: phosphotransferase system (PTS) proteins. Philos Trans R Soc Lond B Biol Sci 326:489–504

    Article  CAS  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity Engineering. Biotechnol Prog 15:777–793

    Article  CAS  Google Scholar 

  • Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ (1987) Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–643

    Article  CAS  Google Scholar 

  • Maiden MC, Jones-Mortimer MC, Henderson PJ (1988) The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12. J Biol Chem 263:8003–8010

    CAS  Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology 1:105–114

    Article  CAS  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  CAS  Google Scholar 

  • Nataf Y, Yaron S, Stahl F, Lamed R, Bayer EA, Scheper TH, Sonenshein AL, Shoham Y (2009) Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum. J Bacteriol 191:203–209

    Article  CAS  Google Scholar 

  • Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125

    Article  CAS  Google Scholar 

  • Notley-McRobb L, Ferenci T (2000) Substrate specificity and signal transduction pathways in the glucose-specific enzyme II (EII(Glc)) component of the Escherichia coli phosphotransferase system. J Bacteriol 182:4437–4442

    Article  CAS  Google Scholar 

  • Ohmiya K, Shirai M, Kurachi Y, Shimizu S (1985) Isolation and properties of beta-glucosidase from Ruminococcus albus. J Bacteriol 161:432–434

    CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  Google Scholar 

  • Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67:827–837

    Article  CAS  Google Scholar 

  • Porter SE, Donohoe BS, Beery KE, Xu Q, Ding SY, Vinzant TB, Abbas CA, Himmel ME (2007) Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes. Biotechnol Bioeng 98:123–131

    Article  CAS  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    CAS  Google Scholar 

  • Runquist D, Fonseca C, Rådstrom P, Spencer-Martins I, Hahn-Hägerdal B (2009) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130

    Article  CAS  Google Scholar 

  • Saier MH Jr, Reizer J (1994) The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13:755–764

    Article  CAS  Google Scholar 

  • Saier MH, Hvorup RN, Barabote RD (2005) Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans 33:220–224

    Article  CAS  Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–186

    Article  CAS  Google Scholar 

  • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052

    Article  CAS  Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reactions. Wiley, New York

    Google Scholar 

  • Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000

    CAS  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81:691–699

    Article  CAS  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2065-x

  • Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684

    Article  CAS  Google Scholar 

  • Simoni RD, Roseman S, Saier MH Jr (1976) Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 251:6584–6597

    CAS  Google Scholar 

  • Soberon X, Saier MH Jr (2006) Engineering transport protein function: theoretical and technical considerations using the sugar-transporting phosphotransferase system of Escherichia coli as a model system. J Mol Microbiol Biotechnol 11:302–307

    Article  CAS  Google Scholar 

  • Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ (1995) Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli. Receptors Channels 3:117–128

    CAS  Google Scholar 

  • Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldan A (2009) Emerging new paradigms for ABCG transporters. Biochim Biophys Acta 1791:584–593

    CAS  Google Scholar 

  • Terasawa M, Yukawa H (1993) Industrial production of biochemicals by native immobilization. In: Tanaka A, Tosaka OKobayashi T (eds) Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 37–52

    Google Scholar 

  • van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204

    Google Scholar 

  • Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  CAS  Google Scholar 

  • Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT1–3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883

    Article  CAS  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  CAS  Google Scholar 

  • Yanase H, Nozaki K, Okamoto K (2005) Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol Lett 27:259–263

    Article  CAS  Google Scholar 

  • Zhang YH, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of a grant from the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jojima, T., Omumasaba, C.A., Inui, M. et al. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85, 471–480 (2010). https://doi.org/10.1007/s00253-009-2292-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2292-1

Keywords

Navigation