Skip to main content

Advertisement

Log in

Recent advances in the biological production of mannitol

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mannitol is a fructose-derived, 6-carbon sugar alcohol that is widely found in bacteria, yeasts, fungi, and plants. Because of its desirable properties, mannitol has many applications in pharmaceutical products, in the food industry, and in medicine. The current mannitol chemical manufacturing process yields crystalline mannitol in yields below 20 mol% from 50% glucose/50% fructose syrups. Thus, microbial and enzymatic mannitol manufacturing methods have been actively investigated, in particular in the last 10 years. This review summarizes the most recent advances in biological mannitol production, including the development of bacterial-, yeast-, and enzyme-based transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467

    Article  CAS  PubMed  Google Scholar 

  • Baek H, Song KH, Park SM, Kim SY, Hyun HH (2003) Role of glucose in the bioconversion of fructose into mannitol by Candida magnoliae. Biotechnol Lett 25:761–765

    Article  CAS  PubMed  Google Scholar 

  • Bäumchen C, Bringer-Meyer S (2007) Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:545–552

    Article  CAS  PubMed  Google Scholar 

  • Bäumchen C, Roth AHFJ, Biedendieck R, Malten M, Follmann M, Sahm H, Bringer-Meyer S, Jahn D (2007) Mannitol production by resting state whole cell biotransformation of fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium. Biotechnol J 2:1408–1416

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Schawarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. J Mol Catal B Enzym 5:1–11

    Article  CAS  Google Scholar 

  • Chinese Chemical Market (2005) Mannitol Production & Market in China. Report number 05M002, 2nd edition. http://www.cnchemicals.com/maindocs/marketreports/maincontent/Mannitol_2005.htm

  • Chinese Chemical Market (2007) Mannitol Production & Market in China. Report number 05M002, 3rd edition. http://www.cnchemicals.com/maindocs/marketreports/maincontent/Mannitol.htm

  • Costenoble R, Adler L, Niklasson C, Liden G (2003) Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol. FEMS Yeast Res 3:17–25

    CAS  PubMed  Google Scholar 

  • Ferain T, Schanck AN, Delcour J (1996) 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178:7311–7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontes C, Honorato T, Rabelo M, Rodrigues S (2009) Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess Biosys Engin 32:493–499

    Article  CAS  Google Scholar 

  • Fred EB, Peterson WH, Anderson JA (1921) The characteristics of certain pentose-destroying bacteria, especially as concerns their action on arabinose and xylose. J Biol Chem 48:385–412

    CAS  Google Scholar 

  • Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobben GJ, Peters SWPG, Wisselink HW, Weusthuis RA, Hoefnagel MHN, Hugenholtz J, Eggink G (2001) Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl Environ Microbiol 67:2867–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassler BL, Dennis M, Laivenieks M, Zeikus JG, Worden RM (2007) Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase: Effects on bioelectronic interface performance. Appl Biochem Biotechnol 143:1–15

    Article  CAS  PubMed  Google Scholar 

  • Helanto M, Aarnikunnas J, von Weymarn N, Airaksinen U, Palva A, Leisola M (2005) Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J Biotechnol 116:283–294

    Article  CAS  PubMed  Google Scholar 

  • Jennings DH (1984) Polyol metabolism in fungi. Adv Microbial Physiol 25:149–193

    Article  CAS  Google Scholar 

  • Kandler O, Weiss N (1986) Regular, nonsporing gram-positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1208–1234

    Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

    Article  CAS  PubMed  Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2005) D-Mannitol formation from D-glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl Microbiol Biotechnol 69:397–403

    Article  CAS  PubMed  Google Scholar 

  • Kets EP, Galinski EA, de Wit M, de Bont JA, Heipieper HJ (1996) Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol 178:6665–6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulbe KD, Schwab U, Gudernatsch W (1987) Enzyme-catalyzed production of mannitol and gluconic acid. Product recovery by various procedures. Ann NY Acad Sci 506:552–568

    Article  CAS  PubMed  Google Scholar 

  • Le AS, Mulderrig KB (2001) Sorbitol and mannitol. In: O’Bryen Nabors L (ed) Alternative sweeteners. Marcel Dekker, New York

    Google Scholar 

  • Lee JK, Song JY, Kim SY (2003) Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production. Biotechnol Prog 19:768–775

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Oh DK, Song HY, Kim IW (2007) Ca2+ and Cu2+ supplementation increases mannitol production by Candida magnoliae. Biotechnol Lett 29:291–294

    Article  CAS  PubMed  Google Scholar 

  • Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  PubMed  Google Scholar 

  • Martinez G, Barker H, Horecker B (1963) A specific mannitol dehydrogenase from Lactobacillus brevis. J Biol Chem 238:1598–1603

    CAS  Google Scholar 

  • Neves AR, Ramos A, Shearman CA, Gasson MJ, Almeida JS, Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur J Biochem 267:3859–3868

    Article  CAS  PubMed  Google Scholar 

  • Nyyssölä A, Leisola M (2005) Production of sugar alcohols by lactic acid bacteria. Recent Res Devel Biotech Bioeng 7:19–39

    Google Scholar 

  • Parmentier S, Arnaut F, Soetaert W, Vandamme EJ (2003) Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. Comm Agric Appl Biol Sci 68:255–262

    CAS  Google Scholar 

  • Pharr DM, Stoop JMH, Williamson JD, Feusi MES, Massel MO, Conkling MA (1995) The dual role of mannitol as osmoprotectant and photoassimilate in celery. HortSci 30:1182–1188

    Article  CAS  Google Scholar 

  • Racine FM, Saha BC (2007) Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochem 42:1609–1613

    Article  CAS  Google Scholar 

  • Saha B (2006a) A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 72:676–680

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2006b) Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme Microb Technol 39:991–995

    Article  CAS  Google Scholar 

  • Sakai S, Yamanaka K (1968) Crystalline D-mannitol: NAD+ oxidoreductase from Leuconostoc mesenteroides. Biochim Biophys Acta 151:684–686

    Article  CAS  PubMed  Google Scholar 

  • Silveira M, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408

    Article  CAS  PubMed  Google Scholar 

  • Slatner M, Nagl G, Haltrich D, Kulbe KD, Nidetzky B (1998) Enzymatic synthesis of mannitol. Reaction engineering for a recombinant mannitol dehydrogenase. Ann NY Acad Sci 864:450–453

    Article  CAS  PubMed  Google Scholar 

  • Smiley KL, Cadmus MC, Liepins P (1967) Biosynthesis of D-mannitol from D-glucose by Aspergillus candidus. Biotechnol Bioeng 9:365–374

    Article  CAS  Google Scholar 

  • Soetaert W, Buchholz K, Vandamme EJ (1995) Production of D-mannitol and D-lactic acid by fermentation with Leuconostoc mesenteroides. Agrofoodindustry Hi-Tech 6:41–44

    CAS  Google Scholar 

  • Soetaert W, Vanhooren P, Vandamme EJ (1999) The production of mannitol by fermentation. In: Bucke C (ed) Carbohydrate biotechnology protocols. Humana, Totowa, pp 261–275

    Chapter  Google Scholar 

  • Song KH, Lee JK, Song JY, Hong SG, Baek H, Kim SY, Hyun HH (2002) Production of mannitol by a novel strain of Candida magnoliae. Biotechnol Lett 24:9–12

    Article  CAS  Google Scholar 

  • Song SH, Ahluwalia N, Leduc Y, Delbaere LTJ, Vieille C (2008) Thermotoga maritima TM0298 is a highly thermostable mannitol dehydrogenase. Appl Microbiol Biotechnol 81:485–495

    Article  CAS  PubMed  Google Scholar 

  • Sriprapundh D, Vieille C, Zeikus JG (2003) Directed evolution of Thermotoga neapolitana xylose isomerase: high activity on glucose at low temperature and low pH. Protein Eng 16:683–690

    Article  CAS  PubMed  Google Scholar 

  • Stoop JM, Mooibroek H (1998) Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress. Appl Environ Microbiol 64:4689–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Thompson J (1987) Sugar transport in the lactic acid bacteria. In: Reizer JAP (ed) Sugar transport and metabolism in gram-positive bacteria. Ellis Horwood, Chichester, pp 13–38

    Google Scholar 

  • van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14:421–426

    Article  CAS  PubMed  Google Scholar 

  • von Weymarn FNW, Kiviharju KJ, Jääskeläinen ST, Leisola MSA (2003) Scale-up of a new bacterial mannitol production process. Biotechnol Prog 19:815–821

    Article  CAS  Google Scholar 

  • von Weymarn N, Hujanen H, Leisola M (2002a) Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem 37:1207–1213

    Article  Google Scholar 

  • von Weymarn N, Kiviharju K, Leisola M (2002b) High-level production of D-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29:44–49

    Article  CAS  Google Scholar 

  • Vrtis JM, White AK, Metcalf WW, van der Donk WA (2002) Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew Chem Int Ed Engl 41:3257–3259

    Article  CAS  PubMed  Google Scholar 

  • Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  • Wisselink HW, Mars AE, van der Meer P, Eggink G, Hugenholtz J (2004) Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl Environ Microbiol 70:4286–4292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisselink HW, Moers A, Mars AE, Hoefnagel MHN, de Vos WM, Hugenholtz J (2005) Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Appl Environ Microbiol 71:1507–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Initiative grant number 2008-35504-04611 from the United States Department of Agriculture’s Cooperative State Research, Education, and Extension Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Vieille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S.H., Vieille, C. Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84, 55–62 (2009). https://doi.org/10.1007/s00253-009-2086-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2086-5

Keywords

Navigation