Skip to main content

Advertisement

Log in

Diversity of Bacterial Communities Along a Petroleum Contamination Gradient in Desert Soils

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial communities in oil-polluted desert soils have been rarely studied compared to their counterparts from freshwater and marine environments. We investigated bacterial diversity and changes therein in five desert soils exposed to different levels of oil pollution. Automated rRNA intergenic spacer (ARISA) analysis profiles showed that the bacterial communities of the five soils were profoundly different (analysis of similarities (ANOSIM), R = 0.45, P < 0.0001) and shared less than 20 % of their operational taxonomic units (OTUs). OTU richness was relatively higher in the soils with the higher oil pollution levels. Multivariate analyses of ARISA profiles revealed that the microbial communities in the S soil, which contains the highest level of contamination, were different from the other soils and formed a completely separate cluster. A total of 16,657 ribosomal sequences were obtained, with 42–89 % of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria were encountered in all soils, sequences belonging to anaerobic bacteria from the classes Deltaproteobacteria, Clostridia, and Anaerolineae were only detected in the S soil. Sequences belonging to the genus Terriglobus of the class Acidobacteria were only detected in the B3 soil with the lowest level of contamination. Redundancy analysis (RDA) showed that oil contamination level was the most determinant factor that explained variations in the microbial communities. We conclude that the exposure to different levels of oil contamination exerts a strong selective pressure on bacterial communities and that desert soils are rich in aerobic and anaerobic bacteria that could potentially contribute to the degradation of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abed RMM, Polerecky L, Al Najjar M, de Beer D (2006) Effect of temperature on photosynthesis, oxygen consumption and sulfide production in an extremely hypersaline cyanobacterial mat. Aquat Microb Ecol 44:21–30

    Article  Google Scholar 

  2. Acosta-Gonzalez A, Rossello-Mora R, Marques S (2013) Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the prestige oil spill. Environ Microbiol 15:77–92

    Article  CAS  PubMed  Google Scholar 

  3. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated-hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    Article  CAS  Google Scholar 

  4. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369

    Article  CAS  PubMed  Google Scholar 

  5. Ahn JH, Kim MS, Kim MC, Lim JS, Lee GT, Yun JK, Kim T, Kim T, Ka JO (2006) Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J Microbiol Biotechnol 16:704–715

    CAS  Google Scholar 

  6. Alonso-Gutierrez J, Costa MM, Figueras A, Albaiges J, Vinas M, Solanas AM, Novoa B (2008) Alcanivorax strain detected among the cultured bacterial community from sediments affected by the ‘Prestige’ oil spill. Mar Ecol Prog Ser 362:25–36

    Article  Google Scholar 

  7. Al-Saleh E, Drobiova H, Obuekwe C (2009) Predominant culturable crude oil-degrading bacteria in the coast of Kuwait. Int Biodeterior Biodegradation 63:400–406

    Article  CAS  Google Scholar 

  8. Andrade LL, Leite DCA, Ferreira EM, Ferreira LQ, Paula GR, Maguire MJ, Hubert CRJ, Peixoto RS, Domingues RMCP, Rosado AS (2012) Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment. BMC Microbiol 12:186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394

    Article  CAS  PubMed  Google Scholar 

  10. Arulazhagan P, Vasudevan N, Yeom IT (2010) Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int J Environ Sci Technol 7:639–652

    Article  CAS  Google Scholar 

  11. Baek KH, Yoon BD, Kim BH, Cho DH, Lee IS, Oh HM, Kim HS (2007) Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. J Microbiol Biotechnol 17:67–73

    CAS  PubMed  Google Scholar 

  12. Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, Kolganova TV (2006) The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology 75:161–171

    Article  CAS  Google Scholar 

  13. Bhupathiraju VK, McInerney MJ, Woese CR, Tanner RS (1999) Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int J Syst Bacteriol 49:953–960

    Article  CAS  PubMed  Google Scholar 

  14. Bhupathiraju VK, Oren A, Sharma PK, Tanner RS, Woese CR, McInerney MJ (1994) Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int J Syst Bacteriol 44:565–572

    Article  CAS  PubMed  Google Scholar 

  15. Brady NC (1984) The nature and properties of soil. Macmillan Book Co, New York

    Google Scholar 

  16. Cappello S, Caruso G, Zampino D, Monticelli LS, Maimone G, Denaro R, Tripodo B, Troussellier M, Yakimov M, Giuliano L (2007) Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102:184–194

    Article  CAS  PubMed  Google Scholar 

  17. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chandankere R, Yao J, Choi MMF, Masakorala K, Chan Y (2013) An efficient biosurfactant-producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBA isolated from petroleum reservoir. Biochem Eng J 74:46–53

    Article  CAS  Google Scholar 

  19. Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  20. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cubitto MA, Moran AC, Commendatore M, Chiarello MN, Baldini MD, Sineriz F (2004) Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils. Biodegradation 15:281–287

    Article  CAS  PubMed  Google Scholar 

  22. Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Haggblom MM (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139

    CAS  PubMed  Google Scholar 

  23. Das R, Tiwary BN (2013) Isolation of a novel strain of Planomicrobium chinense from diesel contaminated soil of tropical environment. J Basic Microbiol 53:723–732

    Article  CAS  PubMed  Google Scholar 

  24. dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PloS ONE 6

  25. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16s rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed Central  PubMed  Google Scholar 

  26. Dowd SF, Sun Y, Wolcott RD, Domingo A, Carroll JA (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5:459–472

    Article  CAS  PubMed  Google Scholar 

  27. Dowd SE, Zaragoza J, Rodriguez JR, Oliver MJ, Payton PR (2005) Windows.net network distributed basic local alignment search toolkit (W.ND-BLAST). BMC Bioinform 6:93

    Article  Google Scholar 

  28. Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gauthier E, Deziel E, Villemur R, Juteau P, Lepine F, Beaudet R (2003) Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. J Appl Microbiol 94:301–311

    Article  CAS  PubMed  Google Scholar 

  30. Ghosal D, Chakraborty J, Khara P, Dutta TK (2010) Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD. FEMS Microbiol Lett 313:103–110

    Article  CAS  PubMed  Google Scholar 

  31. Golby S, Ceri H, Gieg LM, Chatterjee I, Marques LLR, Turner RJ (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol Ecol 79:240–250

    Article  CAS  PubMed  Google Scholar 

  32. Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hanson KG, Nigam A, Kapadia M, Desai AJ (1997) Bioremediation of crude oil contamination with Acinetobacter sp. A3. Curr Microbiol 35:191–193

    Article  CAS  PubMed  Google Scholar 

  34. Hassanshahian M, Emtiazi G, Cappello S (2012) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64:7–12

    Article  CAS  PubMed  Google Scholar 

  35. Hernandez-Raquet G, Budzinski H, Caumette P, Dabert P, Le Menach K (2006) Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). FEMS Microbiol Ecol 58:550–562

    Article  CAS  PubMed  Google Scholar 

  36. Ijah UJJ, Ukpe LI (1992) Biodegradation of crude oil by Bacillus strains 28a and 61b isolated from oil spilled soil. Waste Manag 12:55–60

    Article  CAS  Google Scholar 

  37. Ilori MO, Amund D, Robinson CK (2000) Ultrastructure of two oil-degrading bacteria isolated from the tropical soil environment. Folia Microbiol 45:259–262

    Article  CAS  Google Scholar 

  38. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jin S, Fallgren PH, Bilgin AA, Morris JM, Barnes PW (2007) Bioremediation of benzene, ethylbenzene, and xylenes in groundwater under iron-amended, sulfate-reducing conditions. Environ Toxicol Chem 26:249–253

    Article  CAS  PubMed  Google Scholar 

  40. Juck D, Charles T, Whyte LG, Greer CW (2000) Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol Ecol 33:241–249

    Article  CAS  PubMed  Google Scholar 

  41. Jung SW, Park JS, Kown OY, Kang JN, Shim WJ, Kim YO (2010) Effects of crude oil on marine microbial communities in short term outdoor microcosms. J Microbiol 48:594–600

    Article  CAS  PubMed  Google Scholar 

  42. Kertesz M, Kawasaki A (2010) Hydrocarbon-degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium and Sphingopyxis. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1693–1705

    Chapter  Google Scholar 

  43. Kleikemper J, Schroth MH, Sigler WV, Schmucki M, Bernasconi SM, Zeyer J (2002) Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 68:1516–1523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Klute A (1986) Methods of soil analysis. Amer Soc Agron, Medison

    Google Scholar 

  45. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C (2002) Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722

    Article  PubMed  Google Scholar 

  47. La Montagne MG, Leifer I, Bergmann S, Van De Werfhorst LC, Holden PA (2004) Bacterial diversity in marine hydrocarbon seep sediments. Environ Microbiol 6:799–808

    Article  Google Scholar 

  48. Lafortune I, Juteau P, Deziel E, Lepine F, Beaudet R, Villemur R (2009) Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol 57:455–468

    Article  CAS  PubMed  Google Scholar 

  49. LaRoe SL, Wang B, Han JI (2010) Isolation and characterization of a novel polycyclic aromatic hydrocarbon-degrading bacterium, Sphingopyxis sp strain M2R2, capable of passive spreading motility through soil. Environ Eng Sci 27:505–512

    Article  CAS  Google Scholar 

  50. Lee E-H, Lee SH, Cho K-S (2011) Bacterial diversity dynamics in a long-term petroleum-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:281–290

    Article  CAS  PubMed  Google Scholar 

  51. Liang Y, Li G, Van Nostrand JD, He Z, Wu L, Den Y, Zhang X, Zhou J (2009) Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiol Ecol 70:324–333

    Article  CAS  PubMed  Google Scholar 

  52. Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a north sea oil-production well. Int J Syst Bacteriol 48:1007–1013

    Article  CAS  PubMed  Google Scholar 

  53. Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M (2009) Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 108:400–407

    Article  CAS  PubMed  Google Scholar 

  54. Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J Ind Microbiol Biotechnol 18:75–81

    Article  CAS  Google Scholar 

  55. Maila MP, Randima P, Dronen K, Cloete TE (2006) Soil microbial communities: influence of geographic location and hydrocarbon pollutants. Soil Biol Biochem 38:303–310

    Article  CAS  Google Scholar 

  56. Mannisto MK, Rawat S, Starovoytov V, Haeggblom MM (2011) Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 61:1823–1828

    Article  CAS  PubMed  Google Scholar 

  57. Mara K, Decorosi F, Viti C, Giovannetti L, Papaleo MC, Maida I, Perrin E, Fondi M, Vaneechoutte M, Nemec A, van den Barselaar M, Dijkshoom L, Fani R (2012) Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol 163:161–172

    Article  CAS  PubMed  Google Scholar 

  58. Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74:669–681

    Article  CAS  PubMed  Google Scholar 

  59. Miralles G, Grossi V, Acquaviva M, Duran R, Bertrand JC, Cuny P (2007) Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere 68:1327–1334

    Article  CAS  PubMed  Google Scholar 

  60. Miralles G, Nerini D, Mante C, Acquaviva M, Doumenq P, Michotey V, Nazaret S, Bertrand JC, Cuny P (2007) Effects of spilled oil on bacterial communities of mediterranean coastal anoxic sediments chronically subjected to oil hydrocarbon contamination. Microb Ecol 54:646–661

    Article  CAS  PubMed  Google Scholar 

  61. Miranda-Tello E, Fardeau ML, Thomas P, Ramirez F, Casalot L, Cayol JL, Garcia JL, Ollivier B (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174

    Article  CAS  PubMed  Google Scholar 

  62. Muckian L, Grant R, Doyle E, Clipson N (2007) Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere 68:1535–1541

    Article  CAS  PubMed  Google Scholar 

  63. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Soleimani M, Jamshidnejad Z (2011) Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids Surf B: Biointerfaces 82:33–39

    Article  CAS  PubMed  Google Scholar 

  64. Noble IR, Gitay H (1996) Desert in changing climate: impact. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate change 1995: impact, adaptation and migration of climate change: scientific-technical analysis. Cambridge Univ. Press, New York, pp 159–165

    Google Scholar 

  65. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  66. Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res Part 2 Top Stud Oceanogr 57:2008–2021

    Article  CAS  Google Scholar 

  67. Paisse S, Coulon F, Goni-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    Article  CAS  PubMed  Google Scholar 

  68. Paisse S, Goni-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405

    Article  PubMed  Google Scholar 

  69. Parales RE (2010) Hydrocarbon degradation by Betaproteobacteria. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1716–1721

    Google Scholar 

  70. Perez-de-Mora A, Engel M, Schloter M (2011) Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Microb Ecol 62:959–972

    Article  CAS  PubMed  Google Scholar 

  71. Perfumo A, Smyth T, Marchant R, Banat I (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1501–1512

    Chapter  Google Scholar 

  72. Peters F, Rother M, Boll M (2004) Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. J Bacteriol 186:2156–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Prince R, Gramain A, McGenity T (2010) Prokaryotic hydrocarbon degraders. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1672–1692

    Google Scholar 

  74. Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217

    Article  CAS  PubMed  Google Scholar 

  75. Radwan S (2008) Microbiology of oil-polluted contaminated desert soils and coastal areas in the Arabian Gulf Region. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology 13. Springer, Berlin, pp 275–298

    Chapter  Google Scholar 

  76. Radwan S (2009) Phytoremediation for oily desert soils. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Berlin, pp 279–298

    Chapter  Google Scholar 

  77. Radwan SS, Al-Hasan RH (2000) Oil pollution and cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 307–319

    Google Scholar 

  78. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ravot G, Magot M, Ollivier B, Patel BKC, Ageron E, Grimont PAD, Thomas P, Garcica JL (1997) Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol Lett 147:81–88

    Article  CAS  PubMed  Google Scholar 

  81. Rawat SR, Mannisto MK, Starovoytov V, Goodwin L, Nolan M, Hauser L, Land M, Davenport KW, Woyke T, Haggblom MM (2012) Complete genome sequence of Terriglobus saanensis type strain SP1PR4(T), an Acidobacteria from tundra soil. Stand. Genom Sci 7:59–69

    CAS  Google Scholar 

  82. Ribeiro H, Mucha AP, Almeida CMR, Bordalo AA (2013) Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Sci Total Environ 458:568–576

    Article  PubMed  Google Scholar 

  83. Roling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Saadoun I, Mohammad MJ, Hameed KM, Shawaqfah MA (2008) Microbial populations of crude oil spill polluted soils at the Jordan-Iraq desert (the Badia region). Braz J Microbiol 39:453–456

    Article  PubMed Central  PubMed  Google Scholar 

  85. Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  PubMed  Google Scholar 

  86. Sherry A, Gray ND, Ditchfield AK, Aitken CM, Jones DM, Roeling WFM, Hallmann C, Larter SR, Bowler BFJ, Head IM (2013) Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. Int Biodeterior Biodegradradation 81:105–113

    Article  CAS  Google Scholar 

  87. Singleton DR, Ramirez LG, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75:2613–2620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132

    Article  CAS  Google Scholar 

  90. Sun Y, Cai Y, Liu L, Yu F, Farrell ML, McKendree W, Farmerie W (2009) ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res 37

  91. Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AAM, Grotenhuis T, Rijnaarts HHM, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79:619–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Vazquez Nunez E, Valenzuela-Encinas C, Alcantara-Hernandez RJ, Navarro-Noya YE, Luna-Guido M, Marsch R, Dendooven L (2012) Modifications of bacterial populations in anthracene contaminated soil. Appl Soil Ecol 61:113–126

    Article  Google Scholar 

  93. Vila J, Maria Nieto J, Mertens J, Springael D, Grifoll M (2010) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73:349–362

    CAS  PubMed  Google Scholar 

  94. Vinas M, Sabate J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Volossiouk T, Robb EJ, Nazar RN (1995) Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol 61:3972–3976

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wang YF, Tam NFY (2011) Microbial community dynamics and biodegradation of polycyclic aromatic hydrocarbons in polluted marine sediments in Hong Kong. Mar Pollut Bull 63:424–430

    Article  CAS  PubMed  Google Scholar 

  97. Weisman WH (1998) Total petroleum hydrocarbon criteria working group: a risk-based approach for the management of total petroleum hydrocarbons in soil. J Soil Contamination 7:1–15

    Article  CAS  Google Scholar 

  98. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Yamane K, Maki H, Nakayama T, Nakajima T, Nomura N, Uchiyama H, Kitaoka M (2008) Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci Biotechnol Biochem 72:2831–2839

    Article  CAS  PubMed  Google Scholar 

  100. Yang S, Wen X, Jin H, Wu Q (2012) Pyrosequencing investigation into the bacterial community in permafrost soils along the China-Russia crude oil pipeline (CRCOP). PLoS ONE 7

  101. Yoshida N, Yagi K, Sato D, Watanabe N, Kuroishi T, Nishimoto K, Yanagida A, Katsuragi T, Kanagawa T, Kurane R, Tani Y (2005) Bacterial communities in petroleum oil in stockpiles. J Biosci Bioeng 99:143–149

    Article  CAS  PubMed  Google Scholar 

  102. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010) Sphingopyxis bauzanensis sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:2618–2622

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their great thanks to Mr. Abdulla Al-Harthy from Petroleum Development of Oman (PDO) for the organization of field trips to the sampling site and for his cooperation throughout the project. Mr. Jamal Al-Sabahi is also thanked for his assistance in the chemical analysis. This research was financially supported by The Research Council (TRC) of Oman (grant RC/SCI/BIOL/11/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raeid M. M. Abed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1S

GC/MS chromatograms showing the concentrations of crude oil fractions in the five studied oil-polluted desert soils performed directly after sampling (A) and concentrations (in ppm) of individual alkanes (C10-C30) in each sample as detected by GC analysis (B). (DOC 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, R.M.M., Al-Kindi, S. & Al-Kharusi, S. Diversity of Bacterial Communities Along a Petroleum Contamination Gradient in Desert Soils. Microb Ecol 69, 95–105 (2015). https://doi.org/10.1007/s00248-014-0475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0475-5

Keywords

Navigation