Skip to main content
Log in

Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The biodegradability of polycyclic aromatic hydrocarbons such as naphthalene, fluorene, anthracene and phenanthrene by a halotolerant bacterial consortium isolated from marine environment was investigated. The polycyclic aromatic hydrocarbons degrading bacterial consortium was enriched from mixture saline water samples collected from Chennai (Port of Chennai, salt pan), India. The consortium potently degraded polycyclic aromatic hydrocarbons (> 95%) at 30g/L of sodium chloride concentration in 4 days. The consortium was able to degrade 39 to 45% of different polycyclic hydrocarbons at 60 g/L NaCl concentration. Due to increase in salinity, the percent degradation decreased. To enhance polycyclic aromatic hydrocarbons degradation, yeast extract was added as an additional substrate at 60g/L NaCl concentration. After the addition of yeast extract, the consortium degraded > 74 % of polycyclic aromatic hydrocarbons at 60 g/L NaCl concentration in 4 days. The consortium was also able to degrade PAHs at different concentrations (5, 10, 20, 50 and 100 ppm) with 30 g/L of NaCl concentration. The polycyclic aromatic hydrocarbons degrading halotolerant bacterial consortium consists of three bacterial strains, namely Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agbozu, I. E.; Opuene, K., (2009). Occurrence and Diagenetic Evolution of Perylene in the Sediments of Oginigba Creek, Southern Nigeria. Int. J. Environ. Res., 3(1), 117–120 (4 pages).

    CAS  Google Scholar 

  • Atlas, R., (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev., 45(1), 180–209 (30 pages).

    CAS  Google Scholar 

  • Atlas, R.; Bragg J., (2009). Bioremediation of marine oil spills: When and when not-the Exxon Valdez experience. Microbial. Biotech., 2(2), 213–221 (9 pages).

    Article  CAS  Google Scholar 

  • Bouchez M.; Blanchet D.; Vandecasteele J. P., (1996). The microbiological fate of polycyclic aromatic hydrocarbons: Carbon and oxygen balances for bacterial degradation of model compounds. Appl. Microbiol. Biotech., 45(4), 556–561 (6 pages).

    Article  CAS  Google Scholar 

  • Cerniglia, C. E., (1993). Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotech., 3(2–3), 331–338 (8 pages).

    Article  Google Scholar 

  • Diaz, M.P.; Grigson, S. J.W.; Peppiatt, C. J.; Grant Burgess, J., (2000). Isolation and characterization of novel hydrocarbon-degrading Euryhaline consortia from crude oil and mangrove sediments. Mar. Biotech., 2(6), 522–532 (11 pages).

    Article  CAS  Google Scholar 

  • Fagbote, E. O.; Olanipekun, E. O., (2010). Levels of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment of bitumen deposit impacted area. Int. J. Environ. Sci. Tech., 7(3), 561–570 (10 pages).

    Article  CAS  Google Scholar 

  • Gomes, R. C. B.; Nogueira, R.; Oliveira, J. M.; Peixoto, J.; Brito, A. G., (2006). Kinetics of fluorene biodegradation by a mixed culture. Proceedings of the second IASTED International Conference Advanced Technology in the Environmental Field. 6–8 Feb., 2006, Lanzarote, Canary Island, Spain. 84–87.

  • Haghighat S.; Akhavan Sepahy, A.; Mazaheri Assadi, M.; Pasdar, H., (2008). Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial enhanced oil recovery. Int. J. Environ. Sci. Tech., 5(3), 385–390 (6 pages).

    Article  CAS  Google Scholar 

  • Harayama S.; Kasai Y.; Hara A., (2004). Microbial communities in oil-contaminated seawater. Curr. Opin. Biotech., 15(3), 205–214 (10 pages).

    Article  CAS  Google Scholar 

  • Head, I. M.; Jones, D. M.; Röling, W. F. M., (2006). Marine microorganisms make a meal of oil. Nat. Rev. Microbiol., 4(3), 173–182 (10 pages).

    Article  CAS  Google Scholar 

  • Hughes, J. B.; Beckles, D. M.; Chandra, S. D.; Ward, C. H., (1997). Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. J. Ind. Microbiol. Biotech., 18(2–3), 152–160 (9 pages).

    Article  CAS  Google Scholar 

  • Kang, H.; Hwang, S. Y.; Kim, Y. M.; Kim, E.; Kim, Y. S.; Kim, S. K.; Kim, S. W.; Cerniglia, C. E.; Shuttleworth, K. L.; Zylstra, G. J., (2003). Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Can. J. Microbiol., 49(2), 139–144 (6 pages).

    Article  CAS  Google Scholar 

  • Kim, Y. H.; Freeman, J. P.; Moody, J. D.; Engesser, K. H.; Cerniglia, C. E., (2005). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Microbiol. Biotech., 67(2), 275–285 (11 pages).

    Article  CAS  Google Scholar 

  • Kiyohara, H.; Nagao, K.; Yana, K., (1982). Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl. Environ. Microbiol., 43(2), 454–457 (4 pages).

    CAS  Google Scholar 

  • Kumar, M.; Leon, V.; Materano, A. D. S.; Llzins, Olaf, O. A., (2007). A halotolerant and thermotolerant bacillus sp. degrades hydrocarbons and produces tensio-active emulsifying agent. World J. Microbiol. Biotech., 23(2), 211–220 (10 pages).

    Article  CAS  Google Scholar 

  • Lee, K. H.; Byeon, S. H., (2010). The biological monitoring of urinary 1hydroxypyrene by PAH exposure among smokers. Int. J. Environ. Res., 4(3), 439–442 (4 pages).

    CAS  Google Scholar 

  • Margesin R.; Schinner F., (2001 ). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5(2), 73–83 (11 pages).

    Article  CAS  Google Scholar 

  • Mohanan, S., Maruthamuthu, S., Muthukumar, N., Rajasekar, A., Palaniswamy, N., (2007). Biodegradation of Palmarosa oil (Green oil) by Serratia marcescens. Int. J. Environ. Sci. Tech., 4(2), 277–281 (5 pages).

    Google Scholar 

  • Moody, J. D.; Freeman, J. P.; Doerge, D. R.; Cerniglia, C. E., (2001). Degradation of phenanthrene and anthracene by cell suspensions of mycobacterium sp. Strain PYR-1. Appl. Environ. Microbiol., 67(4), 1476–1483 (8 pages).

    Article  CAS  Google Scholar 

  • Nicholson, C. A.; Fathepure, B. Z., (2004). Biodegradation of Benzene by Halophilic and halotolerant bacteria under aerobic conditions. Appl. Microbiol. Biotech., 70(2), 1222–1225 (4 pages).

    CAS  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).

    Article  CAS  Google Scholar 

  • Okafor, E. Ch., Opuene, K., (2007). Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4(2), 233–240 (8 pages).

    CAS  Google Scholar 

  • Osuji, L. C.; Ezebuiro, P. E., (2006). Hydrocarbon contamination of a typical mangrove floor in Niger Delta, Nigeria. Int. J. Environ. Sci. Tech., 3(3), 313–320 (8 pages).

    Article  CAS  Google Scholar 

  • Penet, S.; Marchal, R.; Sghir, A.; Monot, F. (2004). Biodegradation of hydrocarbon cuts used for diesel oil formulation. Appl. Microbiol. Biotech., 66(1), 40–47 (8 pages).

    Article  CAS  Google Scholar 

  • Perugini. M.; Visciano, P.; Giammarino, A.; Manera, M.; Nardo, W. D.; Amorena M., (2007). Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea Italy. Chemosphere, 66(10), 1904–1910 (7 pages).

    Article  CAS  Google Scholar 

  • Pinyakong, O.; Habe, H.; Supaka, N.; Pinpanichkarn, P.; Juntongjin, K.; Yoshida, T.; Furihata, K.; Nojiri, H.; Yamane. H.; Omori, T., (2000). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol. Lett., 191(1), 115–121 (7 pages).

    Article  CAS  Google Scholar 

  • Seo, J. S.; Keum, Y. S.; Hu, Y.; Lee, S. E.; Li, Q. X., (2007). Degradation of phenanthrene by Burkholderia sp. C3: Initial 1,2-and 3,4-dioxygenation and meta-and ortho-cleavage of naphthalene-1,2-diol. Biodegradation., 18(1), 123–131 (9 pages).

    Article  CAS  Google Scholar 

  • Solano-Serena F.; Marchal R.; Ropars M.; Lebeault J. M.; Vandecasteele J. P., (1999). Biodegradation of gasoline: Kinetics mass balance and fate of individual hydrocarbons. J. Appl. Microbiol., 86(6), 1008–1016 (9 pages).

    Article  CAS  Google Scholar 

  • Swannell, R. P.J.; Lee, K.; McDonagh, M., (1996). Field evaluations of marine oil spill bioremediation. Microbiol. Rev., 60(2), 342–365 (24 pages).

    CAS  Google Scholar 

  • Swannell, R. P. J.; Mitchell, D.; Lethbridge, G.; Jones, D.; Heath, D.; Hagley, M.; Jones, D. M.; Petch, S.; Milne, R.; Croxford, R.; Lee, K., (1999). A field demonstration of the efficiency of bioremediation to treat an oiled shoreline following the Sea Empress incident. Environ. Tech., 20(8), 863–874 (12 pages).

    Article  CAS  Google Scholar 

  • Tam, N. F. Y.; Guo, C. L.; Yau, W. Y.; Wong, Y. S., (2002). Preliminary study on biodegradation of phenantherene by bacteria isolated from mangrove sediments in hong kong. Marine Poll. Bull., 45(1–12), 316–324 (9 pages).

    Article  CAS  Google Scholar 

  • Tehrani, D. M.; Minoui, S.; Herfatmanesh, A., (2009). Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil. Bull. Environ. Contam. Toxicol., 82(2), 179–184 (6 pages).

    Article  Google Scholar 

  • Venosa, A. D.; Suidan, M. T.; Wrenn, B. A.; Strohmeier, K. L.; Haines, J. R.; Eberhardt, B. L.; King, D.; Holder, E., (1996). Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ. Sci. Tech., 30(5), 1764–1775 (12 pages).

    Article  CAS  Google Scholar 

  • Wang, J.; Xu, H.; An, M.; Yan, G., (2008). Kinetics and characteristics of phenanthrene degradation by a microbial consortium. Petrol. Sci., 5(1), 73–78 (6 pages).

    Article  CAS  Google Scholar 

  • Williams, P. A.; Sayers, J. R., (1994). The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation, 5(3–4), 195–217 (23 pages).

    Article  CAS  Google Scholar 

  • Yu, S. H.; Ke, L.; Wong, Y. S.; Tam N. F. Y., (2005). Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ. Int., 31(2), 149–154 (6 pages).

    Article  CAS  Google Scholar 

  • Yuan, S. Y.; Wei, S. H.; Chang. B. V., (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41(9), 1463–1468 (6 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arulazhagan Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arulazhagan, P., Vasudevan, N. & Yeom, I.T. Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int. J. Environ. Sci. Technol. 7, 639–652 (2010). https://doi.org/10.1007/BF03326174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326174

Keywords

Navigation