Skip to main content
Log in

Thermophysical properties of medium density fiberboards measured by quasi-stationary method: experimental and numerical evaluation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents an experimental measurement of thermal properties of medium density fiberboards with different thicknesses (12, 18 and 25 mm) and sample sizes (50 × 50 mm and 100 × 100 mm) by quasi-stationary method. The quasi-stationary method is a transient method which allows measurement of three thermal parameters (thermal conductivity, thermal diffusivity and heat capacity). The experimentally gained values were used to verify a numerical model and furthermore served as input parameters for the numerical probabilistic analysis. The sensitivity of measured outputs (time course of temperature) to influential factors (density, heat transfer coefficient and thermal conductivities) was established and described by the Spearman’s rank correlation coefficients. The dependence of thermal properties on density was confirmed by the data measured. Density was also proved to be an important factor for sensitivity analyses as it highly correlated with all output parameters. The accuracy of the measurement method can be improved based on the results of the probabilistic analysis. The relevancy of the experiment is mainly influenced by the choice of a proper ratio between thickness and width of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

x, y, z :

Coordinates (m)

R, L, T :

Dimensions (m)

c :

Specific heat capacity (J kg−1 K−1)

T :

Temperature (K)

q :

Heat flux coordinate (W m−2)

t :

Time (s)

Ax + B :

Formula for the linear approximation of the curve

A :

Slope of the regression line

B :

y-Intercept of the line

nsub :

End time of the numerical analysis

i :

Index of summation (starting for i = 1 to i = nsub)

r, p, m :

Positive integers (summation indexes of terms in Fourier series)

ρ :

Density (kg m−3)

λ :

Thermal conductivity (W m−1 K−1)

α :

Thermal diffusivity (m2 s−1)

0:

Initial condition

R :

Direction perpendicular to the plane

T, L :

In-plane (direction parallel to the plane)

References

  1. Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publish. Comp, Malabar

    Google Scholar 

  2. Cai Z, Ross RJ (2010) Mechanical properties of wood-based composite materials. In: Wood handbook: wood as an engineering material: Chapter 12. Centennial ed. General technical report FPL; GTR-190. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 12.1–12.12

  3. Ganev S, Gendron G, Cloutier A, Beauregard R (2005) Mechanical properties of MDF as a function of density and moisture content. Wood Fiber Sci 37(2):314–326

    Google Scholar 

  4. Wilczyński A, Kociszewski M (2007) Bending properties of particleboard and MDF layers. Holzforschung 61(11):717–722

    Google Scholar 

  5. Schulte M, Frühwald A (1996) Shear modulus, internal bond and density profile of medium density fibre board (MDF). Eur J Wood Wood Prod 54(1):49–55

    Article  Google Scholar 

  6. MacLean JD (1941) Thermal conductivity of wood. Heat Pip Air Cond 13(6):380–391

    Google Scholar 

  7. Steinhagen HP (1977) Thermal conductive properties of wood, green or dry, from −40 °C to +100 °C: a literature review. U.S. Forest Products Laboratory, Department of Agriculture Forest Service, Madison

    Google Scholar 

  8. Suleiman BM, Larfeldt J, Leckner B, Gustavson M (1999) Thermal conductivity and diffusivity of wood. Wood Sci Technol 33:465–473

    Article  Google Scholar 

  9. Zhou J, Zhou H, Hu Ch, Hu S (2013) Measurements of thermal and dielectric properties of medium density fiberboard with different moisture contents. BioResources 8(3):4185–4192

    Google Scholar 

  10. Yu Z-T, Xu X, Fan L-W, Hu Y-C, Cen K-F (2011) Experimental measurements of thermal conductivity of wood species in china: effects of density, temperature, and moisture content. For Prod J 61(2):130–135

    Google Scholar 

  11. Grześkiewicz M, Borysiuk P, Kramarz K (2012) Physical and mechanical properties of thermally modified and densified MDF. Int Wood Prod J 3(1):21–25

    Article  Google Scholar 

  12. Salmon D (2001) Thermal conductivity of insulations using guarded hot plates, including recent developments and source of reference materials. Meas Sci Technol 12:89–98

    Article  Google Scholar 

  13. Xamán J, Lira L, Arce J (2009) Analysis of the temperature distribution in a guarded hot plateapparatus for measuring thermal conductivity. Appl Therm Eng 29:617–623

    Article  Google Scholar 

  14. Kulkarni NG, Bhandarkar UV, Puranik BP, Rao AB (2016) Experimental determination of thermal properties of alluvial soil. Heat Mass Transf 1–9. doi:10.1007/s0023/-016-1772-y

  15. Tariq A, Mohammad A (2016) Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat Mass Transf 52:291–307

    Article  Google Scholar 

  16. Gobbé C, Iserna S, Ladevie B (2004) Hot strip method: application to thermal characterization of orthotropic media. Int J Therm Sci 23(2004):951–958

    Article  Google Scholar 

  17. Ladevie B, Fudym O, Batsale JC (2000) A new simple device to estimate thermophysical properties of insulating materials. Int Commun Heat Mass Transf 17:473–484

    Article  MATH  Google Scholar 

  18. Jannot Y, Deiovanni A, Félix V, Bal H (2011) Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method. Meas Sci Technol 22:1–9

    Article  Google Scholar 

  19. Gustafsson SE (1991) Transient plane source technique for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804

    Article  Google Scholar 

  20. Motahar S, Alemrajabi AA, Khodabandeh R (2015) Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials. Heat Mass Transf 1–11. doi:10.1007/s00231-015-1678-0

  21. Boháč V, Gustavsson M, Kubičár L, Vretenár V (2003) Measurements of building materials by transient methods. In: Thermophysics 2003, Proceedings of the meeting of the Thermophysical Society—Working Group of the Slovak Physical Society, pp 58–66

  22. Boháč V, Kubičár L, Vretenár V (2004) Use of transient method to investigate the thermal properties of two porous materials. High Temp High Press 35(36):67–74

    Google Scholar 

  23. Clarke LN, Kingston RST (1950) Equipment for the simultaneous determination of thermal conductivity and diffusivity of insulating materials using a variable state method. Aust J Appl Sci 1:172–187

    Google Scholar 

  24. Krischer O, Esdorn H (1954) Simple short-term method for the simultaneous determination of thermal conductivity, heat capacity and thermal effusivity of solids, VDI-Forsch.-H. 450 (in German)

  25. Požgaj A, Chovanec D, Kurjatko S, Babiak M (1997) Wood structure and properties. Priroda, pp 1–486 (in Slovak)

  26. Hrčka R, Babiak M (2012) Some non-traditional factors influencing thermal properties of wood. Wood Res 57(3):367–374

    Google Scholar 

  27. Kavazović Z, Deteix J, Fortin A, Cloutier A (2012) Numerical modelling of the medium-density fiberboard hot pressing process, part 2: mechanical and heat and mass transfer models. Wood Fibre Sci 44(3):243–262

    Google Scholar 

  28. Dai C, Yu C (2004) Heat and mass transfer in wood composite panels during hot-pressing: part 1. A physical–mathematical model. Wood Fibre Sci 36(4):585–597

    Google Scholar 

  29. Zhu Z, Kaliske M (2011) Numerical simulation of coupled heat and mass transfer in wood dried at high temperature. Heat Mass Transf 47(3):351–358

    Article  Google Scholar 

  30. Younsi R, Kocaefe D, Kocaefe Y (2006) Three-dimensional simulation of heat and moisture transfer in wood. Appl Therm Eng 26(11):274–285

    Google Scholar 

  31. Gu HM (2001) Structure based, two-dimensional anisotropic, transient heat conduction model for wood. Ph.D. dissertation, Dept. of Wood Sci. & Forest Prods., Virginia Tech. Blacksburg, pp 1–242

  32. Hunt JF, Gu HM (2004) Finite element analyses of two dimensional, anisotropic heat transfer in wood. In: International Ansys conference, pp 1–13

  33. El-Sawalhi R, Lux J, Salagnac P (2015) Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images. Heat Mass Transf 1–11. doi:10.1007/s00231-015-1674-4

  34. Čermák P, Trcala M (2012) Influence of uncertainty in diffusion coefficients on moisture field during wood drying. Int J Heat Mass Transf. doi:10.1016/j.ijheatmasstransfer.2012.07.070

    Google Scholar 

  35. Hrčka R, Halachan P, Babiak M, Lagaňa R, Tippner J, Troppová E, Trcala M (2014) Transverse isotropic material thermal properties measurement. In: Proceedings of the 57th international convention of society of wood science and technology, Zvolen, Slovakia, pp 622–629

  36. ANSYS INC. (2009) Theory reference for the Mechanical APDL and mechanical applications, Release 12.0, SAS IP Inc.

  37. Madenci E, Guven I (2006) The finite element method and applications in engineering using ANSYS. Springer, New York, pp 1–686

    Google Scholar 

  38. Moaveni S (2008) Finite element analysis: theory and application with ANSYS. Pearson Prentice Hall, Upper Saddle River, pp 1–861

    Google Scholar 

  39. Lenk P, Jendželovský N (2013) Structural glass-Review of design philosophies and analysis methods. In: Belis, Louter, Mocibob (eds) COST Action TU0905, mid-term conference on structural glass. Taylor & Francis Group, London, pp 545–554

  40. Kühlmann G (1962) Investigation of the thermal properties of wood and particleboard in dependency from moisture content and temperature in hygroscopic range. Holz als Roh-und Werkstoff 20(7):259–270

    Article  Google Scholar 

  41. Yapici F, Ozcifci A, Nemli G, Gencer A, Kurt S (2011) The effect of expanded perlite on thermal conductivity of medium density fiberboard (MDF) panel. Technology 14(2):47–51

    Google Scholar 

  42. Hankalin V, Ahonen T, Raiko R (2009) On thermal properties of a pyrolysing wood particle. Finnish-Swedish Flame Days, Naantali, Finland

  43. Leon G, Cruz-de-Leon J, Villasenor L (2000) Thermal characterization of pine wood by photoacoustic and photothermal techniques. Holz als Roh- und Werkstoff 58:241–246

    Article  Google Scholar 

  44. Deliiski N (2013) Computation of the wood thermal conductivity during defrosting of the wood. Wood Res 58(4):637–650

    Google Scholar 

  45. Sonderegger W, Niemz P (2009) Thermal conductivity and water vapour transmission properties of wood-based materials. Eur J Wood Wood Prod 67:13–321

    Article  Google Scholar 

  46. Chen S, Liu X, Fang L, Wellwood R (2010) Digital X-ray analysis of density distribution characteristics of wood-based panels. Wood Sci Technol 44:85–93

    Article  Google Scholar 

  47. Wang S, Winistorfer PM, Young TM (2004) Fundamentals of vertical density profile formations in wood composites, Part III., MDF density formation during hot-pressing. Wood Fiber Sci 36(1):17–25

    Google Scholar 

Download references

Acknowledgments

This article is supported by the project “The Establishment of an International Research Team for the Development of New Wood-based Materials” Reg. No. CZ/1.07/2.3.00/20.0269 and by the Internal Grant Agency of the Mendel University (Project No. 19/2014). This work was also supported by the Slovak Research and Development Agency under the contract No. SK-CZ-0045-11 and by the Ministry of Education Youth and Sports of the Czech Republic under the Contract No. 7AMB12SK077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Troppová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troppová, E., Tippner, J. & Hrčka, R. Thermophysical properties of medium density fiberboards measured by quasi-stationary method: experimental and numerical evaluation. Heat Mass Transfer 53, 115–125 (2017). https://doi.org/10.1007/s00231-016-1793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1793-6

Keywords

Navigation