Skip to main content
Log in

Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Concentration-dependent photoluminescence carbon dots (CDs) have been successfully synthesized through the one-step hydrothermal treatment of o-phthalic acid and ethylenediamine. The CDs possessed higher fluorescence quantum yield, up to 39.22%, exhibiting distinguished optical property, water solubility, and stability. The CDs that emit strong blue-green fluorescence can visually identify and determine tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC). TC quenched the fluorescence of CDs at 500 nm owing to the inner filter effect; OTC behaved similarly, but the emission wavelength of CDs was red-shifted to 515 nm. Inversely, once CTC was introduced to CDs solution, the fluorescence increased and the emission peak was blue-shifted to 450 nm. Bandgap transition and electrostatic interaction were proposed to be the mechanisms for the detection of OTC and CTC by CDs. Wide linear relationships were established for TC, OTC, and CTC with the limits of detection to be 50 nM, 36 nM, and 373 nM, respectively. Furthermore, the nanoscale probe constructed by this system has been applied to detect tetracyclines (TCs) in complex samples with satisfying recoveries (93.2–114%) and was designed as a portable test strip sensor for visually on-site TCs of honey sample screening. Accordingly, the preparation process of the nano fluorescent probe is simple and environmentally friendly, and the probe has a specific recognition ability for tetracyclines. The synthesized CDs in this work provide a new orientation for fast, effective, and visual real-time detection of tetracycline in actual samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang X, Qin D, Mo G, Feng J, Zheng X, Deng B. Facile preparation of boron and nitrogen codoped green emission carbon quantum dots for detection of permanganate and captopril. Anal Chem. 2019;91(17):11455–60. https://doi.org/10.1021/acs.analchem.9b02938.

    Article  CAS  PubMed  Google Scholar 

  2. Granados JAO, Thangarasu P, Singh N, Vazquez-Ramos JM. Tetracycline and its quantum dots for recognition of Al(3+) and application in milk developing cells bio-imaging. Food Chem. 2019;278:523–32. https://doi.org/10.1016/j.foodchem.2018.11.086.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer VK, Chatelle CV, Weber W, Niessner R, Seidel M. Flow-based regenerable chemiluminescence receptor assay for the detection of tetracyclines. Anal Bioanal Chem. 2020;412(14):3467–76. https://doi.org/10.1007/s00216-019-02368-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Granados-Chinchilla F, Rodriguez C. Tetracyclines in food and feedingstuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. J Anal Methods Chem. 2017;2017:1315497. https://doi.org/10.1155/2017/1315497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sachi S, Ferdous J, Sikder MH, Azizul Karim Hussani SM. Antibiotic residues in milk: past, present, and future. J Adv Vet Anim Res. 2019;6(3):315–32. https://doi.org/10.5455/javar.2019.f350.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ramezani M, Mohammad Danesh N, Lavaee P, Abnous K, Mohammad Taghdisi S. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron. 2015;70:181–7. https://doi.org/10.1016/j.bios.2015.03.040.

    Article  CAS  PubMed  Google Scholar 

  7. Feng MX, Wang GN, Yang K, Liu HZ, Wang JP. Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control. 2016;69:171–6. https://doi.org/10.1016/j.foodcont.2016.04.050.

    Article  CAS  Google Scholar 

  8. Shariati S, Yamini Y, Esrafili A. Carrier mediated hollow fiber liquid phase microextraction combined with HPLC-UV for preconcentration and determination of some tetracycline antibiotics. J Chromatogr Sci. 2009;877(4):393–400. https://doi.org/10.1016/j.jchromb.2008.12.042.

    Article  CAS  Google Scholar 

  9. Ahmed S, Ning J, Peng D, Chen T, Ahmad I, Ali A, et al. Current advances in immunoassays for the detection of antibiotics residues: a review. Food Agric Immunol. 2020;31(1):268–90. https://doi.org/10.1080/09540105.2019.1707171.

    Article  CAS  Google Scholar 

  10. Wang Y, Sun Y, Dai H, Ni P, Jiang S, Lu W, et al. A colorimetric biosensor using Fe3O4 nanoparticles for highly sensitive and selective detection of tetracyclines. Sensors Actuators B Chem. 2016;236:621–6. https://doi.org/10.1016/j.snb.2016.06.029.

    Article  CAS  Google Scholar 

  11. Ibarra IS, Rodriguez JA, Miranda JM, Vega M, Barrado E. Magnetic solid phase extraction based on phenyl silica adsorbent for the determination of tetracyclines in milk samples by capillary electrophoresis. J Chromatogr A. 2011;1218(16):2196–202. https://doi.org/10.1016/j.chroma.2011.02.046.

    Article  CAS  PubMed  Google Scholar 

  12. Xiong Y, Zhou H, Zhang Z, He D, He C. Molecularly imprinted on-line solid-phase extraction combined with flow-injection chemiluminescence for the determination of tetracycline. Analyst. 2006;131(7):829–34. https://doi.org/10.1039/b606779b.

    Article  CAS  PubMed  Google Scholar 

  13. Wang T, Mei Q, Tao Z, Wu H, Zhao M, Wang S, et al. A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens Bioelectron. 2020;148:111791. https://doi.org/10.1016/j.bios.2019.111791.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Wang H, Zhang Y, Cao Q, Chen Y. A GSH-responsive PET-based fluorescent probe for cancer cells imaging. Chin Chem Lett. 2020;5938:1–4. https://doi.org/10.1016/j.cclet.2020.10.047.

    Article  CAS  Google Scholar 

  15. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 2013;52(14):3953–7. https://doi.org/10.1002/anie.201300519.

    Article  CAS  Google Scholar 

  16. Jana J, Lee HJ, Chung JS, Kim MH, Hur SH. Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Anal Chim Acta. 2019;1079:212–9. https://doi.org/10.1016/j.aca.2019.06.064.

    Article  CAS  PubMed  Google Scholar 

  17. Sun M, Qu S, Hao Z, Ji W, Jing P, Zhang H, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites. Nanoscale. 2014;6(21):13076–81. https://doi.org/10.1039/c4nr04034a.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, et al. Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun. 2015;51(14):2950–3. https://doi.org/10.1039/c4cc09589h.

    Article  CAS  Google Scholar 

  19. Shen Z, Zhang C, Yu X, Li J, Wang Z, Zhang Z, et al. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J Mater Chem. 2018;6(36):9636–41. https://doi.org/10.1039/c8tc02982b.

    Article  CAS  Google Scholar 

  20. Lu C, Su Q, Yang X. Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines. Nanoscale. 2019;11(34):16036–42. https://doi.org/10.1039/c9nr03989a.

    Article  CAS  PubMed  Google Scholar 

  21. Uriarte D, Domini C, Garrido M. New carbon dots based on glycerol and urea and its application in the determination of tetracycline in urine samples. Talanta. 2019;201:143–8. https://doi.org/10.1016/j.talanta.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  22. Fu Y, Huang L, Zhao S, Xing X, Lan M, Song X. A carbon dot-based fluorometric probe for oxytetracycline detection utilizing a Forster resonance energy transfer mechanism. Spectrochim Acta A Mol Biomol Spectrosc. 2021;246:118947. https://doi.org/10.1016/j.saa.2020.118947.

    Article  CAS  PubMed  Google Scholar 

  23. Xing X, Huang L, Zhao S, Xiao J, Lan M. S,N-doped carbon dots for tetracyclines sensing with a fluorometric spectral response. Microchem J. 2020;157:105065. https://doi.org/10.1016/j.microc.2020.105065.

    Article  CAS  Google Scholar 

  24. Fu Y, Zhao S, Wu S, Huang L, Xu T, Xing X, et al. A carbon dots-based fluorescent probe for turn-on sensing of ampicillin. Dyes Pigments. 2020;172:107846. https://doi.org/10.1016/j.dyepig.2019.107846.

    Article  CAS  Google Scholar 

  25. Miao H, Wang Y, Yang X. Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale. 2018;10(17):8139–45. https://doi.org/10.1039/c8nr02405g.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao N, Wang Y, Hou S, Zhao L. Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Microchim Acta. 2020;187(6):351. https://doi.org/10.1007/s00604-020-04328-1.

    Article  CAS  Google Scholar 

  27. Wang S, Yong W, Liu J, Zhang L, Chen Q, Dong Y. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosens Bioelectron. 2014;57:192–8. https://doi.org/10.1016/j.bios.2014.02.032.

    Article  CAS  PubMed  Google Scholar 

  28. Meng L, Lan C, Liu Z, Xu N, Wu Y. A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics. Anal Chim Acta. 2019;1089:144–51. https://doi.org/10.1016/j.aca.2019.08.065.

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Zhang X, Miao C, Li R, Ji Y. Fluorescent paper-based sensor based on carbon dots for detection of folic acid. Anal Bioanal Chem. 2020;412(12):2805–13. https://doi.org/10.1007/s00216-020-02507-w.

    Article  CAS  PubMed  Google Scholar 

  30. Jia P, Bu T, Sun X, Liu Y, Liu J, Wang Q, et al. A sensitive and selective approach for detection of tetracyclines using fluorescent molybdenum disulfide nanoplates. Food Chem. 2019;297:124969. https://doi.org/10.1016/j.foodchem.2019.124969.

    Article  CAS  PubMed  Google Scholar 

  31. Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed. 2012;51(49):12215–8. https://doi.org/10.1002/anie.201206791.

    Article  CAS  Google Scholar 

  32. Ye C, Qin Y, Huang P, Chen A, Wu FY. Facile synthesis of carbon nanodots with surface state-modulated fluorescence for highly sensitive and real-time detection of water in organic solvents. Anal Chim Acta. 2018;1034:144–52. https://doi.org/10.1016/j.aca.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  33. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater. 2012;24(15):2037–41. https://doi.org/10.1002/adma.201200164.

    Article  CAS  Google Scholar 

  34. Zhu C, Yang S, Wang G, Mo R, He P, Sun J, et al. A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products. J Mater Chem B. 2015;3(34):6871–6. https://doi.org/10.1039/c5tb01093d.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces. 2013;5(24):13242–7. https://doi.org/10.1021/am4042355.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu A, Qu Q, Shao X, Kong B, Tian Y. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem Int Ed. 2012;51(29):7185–9. https://doi.org/10.1002/anie.201109089.

    Article  CAS  Google Scholar 

  37. Moniruzzaman M, Kim J. N-doped carbon dots with tunable emission for multifaceted application: solvatochromism, moisture sensing, pH sensing, and solid state multicolor lighting. Sensors Actuators B Chem. 2019;295:12–21. https://doi.org/10.1016/j.snb.2019.05.035.

    Article  CAS  Google Scholar 

  38. Ba XX, Zhang L, Yin YL, Jiang FL, Jiang P, Liu Y. Luminescent carbon dots with concentration-dependent emission in solution and yellow emission in solid state. J Colloid Interface Sci. 2020;565:77–85. https://doi.org/10.1016/j.jcis.2020.01.007.

    Article  CAS  PubMed  Google Scholar 

  39. Gao MX, Liu CF, Wu ZL, Zeng QL, Yang XX, Wu WB, et al. A surfactant-assisted redox hydrothermal route to prepare highly photoluminescent carbon quantum dots with aggregation-induced emission enhancement properties. Chem Commun. 2013;49(73):8015–7. https://doi.org/10.1039/c3cc44624g.

    Article  CAS  Google Scholar 

  40. Bao L, Zhang ZL, Tian ZQ, Zhang L, Liu C, Lin Y, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater. 2011;23(48):5801–6. https://doi.org/10.1002/adma.201102866.

    Article  CAS  PubMed  Google Scholar 

  41. Chico J, van Holthoon F, Zuidema T. Ion suppression study for tetracyclines in feed. Chromatogr Res Int. 2012;2012:1–9. https://doi.org/10.1155/2012/135854.

    Article  CAS  Google Scholar 

  42. Esmaelpourfarkhani M, Abnous K, Taghdisi SM, Chamsaz M. A fluorometric assay for oxytetracycline based on the use of its europium(III) complex and aptamer-modified silver nanoparticles. Microchim Acta. 2019;186(5):290. https://doi.org/10.1007/s00604-019-3389-6.

    Article  CAS  Google Scholar 

  43. Qiao L, Qian S, Wang Y, Yan S, Lin H. Carbon-dots-based lab-on-a-nanoparticle approach for the detection and differentiation of antibiotics. Chemistry. 2018;24(18):4703–9. https://doi.org/10.1002/chem.201706056.

    Article  CAS  PubMed  Google Scholar 

  44. Lu W, Jiao Y, Gao Y, Qiao J, Mozneb M, Shuang S, et al. Bright yellow fluorescent carbon dots as a multifunctional sensing platform for the label-free detection of fluoroquinolones and histidine. ACS Appl Mater Interfaces. 2018;10(49):42915–24. https://doi.org/10.1021/acsami.8b16710.

    Article  CAS  PubMed  Google Scholar 

  45. Chandra S, Bano D, Pradhan P, Singh VK, Yadav PK, Sinha D, et al. Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem. 2020;412(15):3753–63. https://doi.org/10.1007/s00216-020-02629-1.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou C, He X, Ya D, Zhong J, Deng B. One step hydrothermal synthesis of nitrogen-doped graphitic quantum dots as a fluorescent sensing strategy for highly sensitive detection of metacycline in mice plasma. Sensors Actuators B Chem. 2017;249:256–64. https://doi.org/10.1016/j.snb.2017.04.092.

    Article  CAS  Google Scholar 

  47. Yan Y, Liu JH, Li RS, Li YF, Huang CZ, Zhen SJ. Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride. Anal Chim Acta. 2019;1063:144–51. https://doi.org/10.1016/j.aca.2019.02.047.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Du Q, Zhang X, Huang Y. Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu(3+) fluorescence. Talanta. 2020;206:120202. https://doi.org/10.1016/j.talanta.2019.120202.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We greatly acknowledge the financial support supplied from the National Natural Science Foundation of China (No. 21765014 and 21864018) and the Science and Technology Innovation Platform Project of Jiangxi Province (No. 20192BCD40001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengcheng Huang, Fang-Ying Wu or Lihua Ma.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the ethics committee of Jiangxi Medical College, and their guidelines were followed in the whole study. The serum samples related to our research were collected from the patient. The urine samples involved in our research were from a healthy individual. Informed consent was obtained from all human participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 16509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, B., Huang, P. et al. Concentration-dependent photoluminescence carbon dots for visual recognition and detection of three tetracyclines. Anal Bioanal Chem 413, 2565–2575 (2021). https://doi.org/10.1007/s00216-021-03221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03221-x

Keywords

Navigation