Skip to main content
Log in

Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here, a fast and eco-friendly one-pot hydrothermal technique is utilized for the synthesis of nitrogen/sulfur-co-doped fluorescent carbon quantum dots (NS-CQDs) from a simple precursor of citric acid (CA) and thiosemicarbazide (TSC). The obtained NS-CQDs exhibited strong blue emission under UV light, with fluorescence quantum yield (QY) of ~37.8%. The Commission internationale de l’eclairage (CIE) coordinates originated at (0.15, 0.07), which confirmed the blue fluorescence of the synthesized NS-CQDs. Interestingly, the prepared NS-CQDs were successfully used as a selective nanoprobe for the monitoring of environmentally hazardous explosive picric acid (PA) in different nitro- and non-nitro-aromatic derivatives of PA. The mechanism of the NS-CQDs was also explored, and was posited to occur via the fluorescence resonance electron transfer (FRET) process and non-fluorescent complex formation. Importantly, this system possesses excellent biocompatibility and low cytotoxicity in HeLa cervical cancer cells; hence, it can potentially be used for PA detection in analytical, environmental, and pathological applications. Furthermore, the practical applicability of the proposed sensing system to pond water demonstrated the feasibility of our system along with good recovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu SG, Li N, Li NB, Xiao N, Luo HQ, Fan YZ, Ju YJ. Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing. Anal Chim Acta 2018;1013:63–70.

  2. Li J, Zhang L, Li P, Zhang Y, Dong C. One step hydrothermal synthesis of carbon nanodots to realize the fluorescence detection of picric acid in real samples. Sensor Actuat B: Chem. 2018;258:580–8.

    CAS  Google Scholar 

  3. Ye Q, Yan F, Shi D, Zheng T, Wang Y, Zhou X, Chen L. N, B-doped carbon dots as a sensitive fluorescence probe for Hg2+ ions and 2,4,6-trinitrophenol detection for bioimaging. J Photochem Photo B: Bio 2016;162:1–13.

  4. Hu L, Sun Y, Zhou Y, Bai L, Zhang Y, Han M, et al. Nitrogen and sulfur co-doped chiral carbon quantum dots with independent photoluminescence and chirality. Inor Chem Front. 2017;4(6):946–53.

    CAS  Google Scholar 

  5. Jiang X, Qin D, Mo G, Feng J, Yu C, Mo W, et al. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J Pharm Biomed Anal. 2019;164:514–9.

    CAS  PubMed  Google Scholar 

  6. Xu J, Sahu S, Cao L, Anilkumar P, Tackett KN, Qian H, et al. Carbon nanoparticles as chromophores for photon harvesting and photoconversion. ChemPhysChem. 2011;12(18):3604–8.

    CAS  PubMed  Google Scholar 

  7. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 2010;49(26):4430–4.

    CAS  Google Scholar 

  8. Wang F, Pang S, Wang L, Li Q, Kreiter M, Liu CY. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem Mater. 2010;22(16):4528–30.

    CAS  Google Scholar 

  9. Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007;129(4):744–5.

    CAS  PubMed  Google Scholar 

  10. Yang F, Zhao M, Zheng B, Xiao D, Wu L, Guo Y. Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J Mater Chem. 2012;22(48):25471–9.

    CAS  Google Scholar 

  11. Yang ZC, Wang M, Yong AM, Wong SY, Zhang XH, Tan H, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun. 2011;47(42):11615–7.

    CAS  Google Scholar 

  12. Mondal TK, Dinda D, Saha SK. Nitrogen, sulphur co-doped graphene quantum dot: An excellent sensor for nitroexplosives. Sensor Actuat B: Chem. 2018;257:586–93.

    CAS  Google Scholar 

  13. Wan Y, Wang M, Zhang K, Fu Q, Gao M, Wang L, et al. Facile and green synthesis of fluorescent carbon dots from the flowers of Abelmoschus manihot (Linn.) Medicus for sensitive detection of 2,4,6-trinitrophenol and cellular imaging. Microchem J. 2019;148:385–96.

    CAS  Google Scholar 

  14. Liu S, Shi F, Chen L, Su X. Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2, 4, 6-trinitrophenol detection. Talanta. 2013;116:870–5.

    CAS  PubMed  Google Scholar 

  15. Deng X, Huang X, Wu D. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters. Anal and Bioanal Chem. 2015;407(16):4607–13.

    CAS  Google Scholar 

  16. Chen BB, Liu ZX, Zou HY, Huang CZ. Highly selective detection of 2, 4, 6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst. 2016;141(9):2676–81.

    CAS  PubMed  Google Scholar 

  17. Wang B, Mu Y, Zhang C, Li J. Blue photoluminescent carbon nanodots prepared from zeolite as efficient sensors for picric acid detection. Sensor Actuat B: Chem. 2017;253:911–7.

    CAS  Google Scholar 

  18. Khan ZM, Saifi S, Aslam Z, Khan SA, Zulfequar M. A facile one step hydrothermal synthesis of carbon quantum dots for label-free fluorescence sensing approach to detect picric acid in aqueous solution. J Photochem and Photobio A: Chem. 2020;388:112201.

    Google Scholar 

  19. Rong M, Lin L, Song X, Zhao T, Zhong Y, Yan J, Wang Y, Chen X. A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal chem. 2015 20;87(2):1288–96.

  20. Wang M, Fu Q, Zhang K, Wan Y, Wang L, Gao M, et al. A magnetic and carbon dot based molecularly imprinted composite for fluorometric detection of 2,4,6-trinitrophenol. Micro Acta. 2019;186(2):86.

    Google Scholar 

  21. Tian M, Wang Y, Zhang Y. Synthesis of fluorescent nitrogen-doped carbon quantum dots for selective detection of picric acid in water samples. J Nano Nanotec. 2018;18(12):8111–7.

    CAS  Google Scholar 

  22. Wang Y, Chang X, Jing N, Zhang Y. Hydrothermal synthesis of carbon quantum dots as fluorescent probes for the sensitive and rapid detection of picric acid. Anal Methods. 2018;10(23):2775–84.

    CAS  Google Scholar 

  23. Barron L, Gilchrist E. Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis. Anal Chim Acta. 2014;806:27–54.

    CAS  PubMed  Google Scholar 

  24. Srinivasan P, Gunasekaran M, Kanagasekaran T, Gopalakrishnan R, Ramasamy P. 2,4,6-Trinitrophenol (TNP): An organic material for nonlinear optical (NLO) applications. J Cryst Growth. 2006;289(2):639–46.

    CAS  Google Scholar 

  25. Ko H, Chang S, Tsukruk VV. Porous substrates for label-free molecular level detection of nonresonant organic molecules. ACS Nano. 2009;3(1):181–8.

    CAS  PubMed  Google Scholar 

  26. Ho MY, D’Souza N, Migliorato P. Electrochemical aptamer-based sandwich assays for the detection of explosives. Anal chem. 2012 15;84(10):4245–7.

  27. Babaee S, Beiraghi A. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples. Anal Chim Acta. 2010;662(1):9–13.

    CAS  PubMed  Google Scholar 

  28. Siddique AB, Pramanick AK, Chatterjee S, Ray M. Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Sci Reports. 2018;8(1):1–10.

    Google Scholar 

  29. Peng Y, Zhang A-J, Dong M, Wang Y-W. A colorimetric and fluorescent chemosensor for the detection of an explosive—2,4,6-trinitrophenol (TNP). Chem Commun. 2011;47(15):4505–7.

    CAS  Google Scholar 

  30. Hussain M, Nafady A, Sherazi ST, Shah MR, Alsalme A, Kalhoro MS, et al. Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid. RSC Adv. 2016;6(86):82882–9.

    CAS  Google Scholar 

  31. Zhang X, Hu J, Wang B, Li Z, Xu S, Ma X. A chiral zinc(II) metal-organic framework as high selective luminescent sensor for detecting trace nitro explosives picric acid and Fe3+ ion. J Solid St Chem. 2019;269:459–64.

    CAS  Google Scholar 

  32. Lu X, Zhang G, Li D, Tian X, Ma W, Li S, et al. Thiophene aromatic amine derivatives with two-photon activities as probes for the detection of picric acid and pH. Dye Pig. 2019;170:107641.

    CAS  Google Scholar 

  33. Zhang C, Zhang S, Yan Y, Xia F, Huang A, Xian Y. Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl Mater and Inter. 2017;9(15):13415–21.

    CAS  Google Scholar 

  34. Pal A, Sk MP, Chattopadhyay A. Conducting carbon dot-polypyrrole nanocomposite for sensitive detection of picric acid. ACS Appl Mater and Inter. 2016;8(9):5758–62.

    CAS  Google Scholar 

  35. Pramanik S, Bhalla V, Kumar M. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid. Anal Chim Acta. 2013;793:99–106.

    CAS  PubMed  Google Scholar 

  36. Wang M, Zhang H, Guo L, Cao D. Fluorescent polymer nanotubes as bifunctional materials for selective sensing and fast removal of picric acid. Sensor Actuat B: Chem. 2018;274:102–9.

    CAS  Google Scholar 

  37. Zhang JR, Yue YY, Luo HQ, Li NB. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters. Analyst. 2016;141(3):1091–7.

    CAS  PubMed  Google Scholar 

  38. Liu B, Tong C, Feng L, Wang C, He Y, Lü C. Water-soluble polymer functionalized CdTe/ZnS quantum dots: a facile ratiometric fluorescent probe for sensitive and selective detection of nitroaromatic explosives. Chem Eur J. 2014;20(8):2132–7.

    CAS  PubMed  Google Scholar 

  39. Hou X-G, Wu Y, Cao H-T, Sun H-Z, Li H-B, Shan G-G, et al. A cationic iridium(iii) complex with aggregation-induced emission (AIE) properties for highly selective detection of explosives. Chem Commun. 2014;50(45):6031–4.

    CAS  Google Scholar 

  40. Zhao Z, Zhang J, Wang Y, Chen L, Zhang Y. Hydrothermal synthesis of fluorescent nitrogen-doped carbon quantum dots from ascorbic acid and valine for selective determination of picric acid in water samples. Int J Env Anal Chem. 2016;96(14):1402–13.

    CAS  Google Scholar 

  41. Han C, Wang R, Wang K, Xu H, Sui M, Li J, et al. Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron. 2016;83:229–36.

    CAS  PubMed  Google Scholar 

  42. Bano D, Kumar V, Singh VK, Hasan SH. Green synthesis of fluorescent carbon quantum dots for the detection of mercury(ii) and glutathione. New J Chem. 2018;42(8):5814–21.

    CAS  Google Scholar 

  43. Zhao Y, Zou S, Huo D, Hou C, Yang M, Li J, et al. Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots. Anal Chim Acta. 2019;1047:179–87.

    CAS  PubMed  Google Scholar 

  44. Liao S, Zhao X, Zhu F, Chen M, Wu Z, Yang H, Chen X. Novel S, N-doped carbon quantum dot-based" off-on" fluorescent sensor for silver ion and cysteine. Talanta. 2018;180:300–308.

  45. Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon. 2016;104:169–178.

  46. Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun. 2012;48(75):9367–9.

    CAS  Google Scholar 

  47. Chandra S, Singh VK, Yadav PK, Bano D, Kumar V, Pandey VK, et al. Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal Chim Acta. 2019;1054:145–56.

    CAS  PubMed  Google Scholar 

  48. Xue M, Zhang L, Zou M, Lan C, Zhan Z, Zhao S. Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensor Actuat B: Chem. 2015;219:50–6.

    CAS  Google Scholar 

  49. Sun Y, Shen C, Wang J, Lu Y. Facile synthesis of biocompatible N, S-doped carbon dots for cell imaging and ion detecting. RSC Adv. 2015;5(21):16368–75.

    CAS  Google Scholar 

  50. Bano D, Kumar V, Singh VK, Chandra S, Singh DK, Yadav PK, et al. A facile and simple strategy for the synthesis of label free carbon quantum dots from the latex of Euphorbia milii and its peroxidase-mimic activity for the naked eye detection of glutathione in a human blood serum. ACS Sustain Chem Eng. 2019;7(2):1923–32.

    CAS  Google Scholar 

  51. Yang H, He L, Pan S, Liu H, Hu X. Nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of tannic acid. Spect Acta - Part A: Mol Bio Spect. 2019;210:111–9.

    CAS  Google Scholar 

  52. Bano D, Kumar V, Singh VK, Hasan SH. Green synthesis of fluorescent carbon quantum dots for the detection of mercury(II) and glutathione. New J Chem. 2018;42:5814–21.

    CAS  Google Scholar 

  53. Hu Y, Zhang L, Li X, Liu R, Lin L, Zhao S. Green preparation of S and N co-doped carbon dots from water chestnut and onion as well as their use as an off-on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustain Chem Eng. 2017;5(6):4992–5000.

    CAS  Google Scholar 

  54. Song Y, Zhu S, Xiang S, Zhao X, Zhang J, Zhang H, et al. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale. 2014;6(9):4676–82.

    CAS  PubMed  Google Scholar 

  55. Dinda D, Gupta A, Shaw BK, Sadhu S, Saha SK. Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. ACS Appl Mater Inter. 2014;6(13):10722–8.

    CAS  Google Scholar 

  56. Shi Z-Q, Guo Z-J, Zheng H-G. Two luminescent Zn(ii) metal–organic frameworks for exceptionally selective detection of picric acid explosives. Chem Commun. 2015;51(39):8300–3.

    CAS  Google Scholar 

  57. Liu Y, Gao M, Lam JWY, Hu R, Tang BZ. Copper-catalyzed polycoupling of diynes, primary amines, and aldehydes: A new one-pot multicomponent polymerization tool to functional polymers. Macromolecules. 2014;47(15):4908–19.

    CAS  Google Scholar 

  58. Sk MP, Chattopadhyay A. Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor. RSC Adv. 2014;4(60):31994–9.

    CAS  Google Scholar 

  59. Cheng F, An X, Zheng C, Cao S. Green synthesis of fluorescent hydrophobic carbon quantum dots and their use for 2,4,6-trinitrophenol detection. RSC Adv. 2015;5(113):93360–3.

    CAS  Google Scholar 

  60. Niu Q, Gao K, Lin Z, Wu W. Amine-capped carbon dots as a nanosensor for sensitive and selective detection of picric acid in aqueous solution via electrostatic interaction. Anal Methods. 2013;5(21):6228–33.

    CAS  Google Scholar 

  61. Lin L, Rong M, Lu S, Song X, Zhong Y, Yan J, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale. 2015;7(5):1872–8.

    CAS  PubMed  Google Scholar 

  62. Peng D, Zhang L, Li FF, Cui WR, Liang RP, Qiu JD. Facile and green approach to the synthesis of boron nitride quantum dots for 2,4,6-trinitrophenol sensing. ACS Appl Mater Inter. 2018;10(8):7315–23.

    CAS  Google Scholar 

  63. Sun X, He J, Meng Y, Zhang L, Zhang S, Ma X, et al. Microwave-assisted ultrafast and facile synthesis of fluorescent carbon nanoparticles from a single precursor: preparation, characterization and their application for the highly selective detection of explosive picric acid. J Mater Chem A. 2016;4(11):4161–71.

    CAS  Google Scholar 

  64. Bano D, Kumar V, Chandra S, Singh VK, Mohan S, Singh DK, et al. Synthesis of highly fluorescent nitrogen-rich carbon quantum dots and their application for the turn-off detection of cobalt (II). Opt Mater. 2019 Jun 1;92:311–8.

    CAS  Google Scholar 

  65. Hebert RM, Jackovitz AM. Wildlife toxicity assessment for picric acid (2,4,6-trinitrophenol). Wildlife Toxicity Assessments of Chemicals of Military Concern. Elsevier Inc.; 2015;271–277 p.

Download references

Acknowledgments

This work was financially supported by the Indian Institute of Technology IIT (BHU), Varanasi, and MHRD New Delhi, India. The authors SC, DB, PP, VKS, and PKY acknowledge the Department of Chemistry and Central Instrument Facility (CIF), IIT (BHU), Varanasi, for providing an instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Hadi Hasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Bano, D., Pradhan, P. et al. Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem 412, 3753–3763 (2020). https://doi.org/10.1007/s00216-020-02629-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02629-1

Keywords

Navigation